ucg/src/build/opcode/translate.rs

403 lines
18 KiB
Rust

// Copyright 2019 Jeremy Wall
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::ast::{BinaryExprType, Expression, FormatArgs, Statement, Value};
use crate::ast::{Position, TemplatePart};
use crate::build::format::{ExpressionTemplate, SimpleTemplate, TemplateParser};
use crate::build::opcode::Primitive;
use crate::build::opcode::{Func, Hook, Op};
pub struct AST();
impl AST {
pub fn translate(stmts: Vec<Statement>) -> Vec<Op> {
let mut ops = Vec::new();
Self::translate_stmts(stmts, &mut ops);
return ops;
}
fn translate_stmts(stmts: Vec<Statement>, mut ops: &mut Vec<Op>) {
for stmt in stmts {
match stmt {
Statement::Expression(expr) => Self::translate_expr(expr, &mut ops),
Statement::Assert(_, _) => {
unimplemented!("Assert statements are not implmented yet")
}
Statement::Let(def) => {
let binding = def.name.fragment;
ops.push(Op::Sym(binding));
Self::translate_expr(def.value, &mut ops);
ops.push(Op::Bind);
}
Statement::Output(_, _, _) => {
unimplemented!("Out statements are not implmented yet")
}
Statement::Print(_, _, _) => {
unimplemented!("Print statements are not implmented yet")
}
}
}
}
fn translate_expr(expr: Expression, mut ops: &mut Vec<Op>) {
match expr {
Expression::Simple(v) => {
Self::translate_value(v, &mut ops);
}
Expression::Binary(def) => {
match def.kind {
BinaryExprType::Add => {
Self::translate_expr(*def.right, &mut ops);
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::Add);
}
BinaryExprType::Sub => {
Self::translate_expr(*def.right, &mut ops);
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::Sub);
}
BinaryExprType::Div => {
Self::translate_expr(*def.right, &mut ops);
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::Div);
}
BinaryExprType::Mul => {
Self::translate_expr(*def.right, &mut ops);
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::Mul);
}
BinaryExprType::Equal => {
Self::translate_expr(*def.right, &mut ops);
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::Equal);
}
BinaryExprType::GT => {
Self::translate_expr(*def.right, &mut ops);
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::Gt);
}
BinaryExprType::LT => {
Self::translate_expr(*def.right, &mut ops);
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::Lt);
}
BinaryExprType::GTEqual => {
Self::translate_expr(*def.right, &mut ops);
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::GtEq);
}
BinaryExprType::LTEqual => {
Self::translate_expr(*def.right, &mut ops);
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::LtEq);
}
BinaryExprType::NotEqual => {
Self::translate_expr(*def.right, &mut ops);
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::Equal);
ops.push(Op::Not);
}
BinaryExprType::REMatch => {
Self::translate_expr(*def.right, &mut ops);
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::Runtime(Hook::Regex));
}
BinaryExprType::NotREMatch => {
Self::translate_expr(*def.right, &mut ops);
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::Runtime(Hook::Regex));
ops.push(Op::Not);
}
BinaryExprType::IS => {
Self::translate_expr(*def.right, &mut ops);
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::Typ);
ops.push(Op::Equal);
}
BinaryExprType::AND => {
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::Noop);
let idx = ops.len() - 1;
Self::translate_expr(*def.right, &mut ops);
let jptr = (ops.len() - 1 - idx) as i32;
ops[idx] = Op::And(dbg!(jptr));
dbg!(ops);
}
BinaryExprType::OR => {
// FIXME(jwall): This needs to be handled very differently
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::Noop); // Placeholder used for
let idx = ops.len() - 1;
Self::translate_expr(*def.right, &mut ops);
let jptr = (ops.len() - 1 - idx) as i32;
ops[idx] = Op::Or(jptr);
}
BinaryExprType::Mod => {
Self::translate_expr(*def.right, &mut ops);
Self::translate_expr(*def.left, &mut ops);
ops.push(Op::Mod);
}
BinaryExprType::IN => {
// Dot expressions expect the left side to be pushed first
Self::translate_expr(*def.right, &mut ops);
// Symbols on the right side should be converted to strings to satisfy
// the Index operation contract.
match *def.left {
Expression::Simple(Value::Symbol(name)) => {
Self::translate_expr(
Expression::Simple(Value::Str(name)),
&mut ops,
);
}
expr => {
Self::translate_expr(expr, &mut ops);
}
}
ops.push(Op::SafeIndex);
ops.push(Op::Val(Primitive::Empty));
ops.push(Op::Equal);
ops.push(Op::Not);
}
BinaryExprType::DOT => {
// Dot expressions expect the left side to be pushed first
Self::translate_expr(*def.left, &mut ops);
// Symbols on the right side should be converted to strings to satisfy
// the Index operation contract.
match *def.right {
Expression::Simple(Value::Symbol(name)) => {
Self::translate_expr(
Expression::Simple(Value::Str(name)),
&mut ops,
);
}
expr => {
Self::translate_expr(expr, &mut ops);
}
}
ops.push(Op::Index);
}
};
}
Expression::Grouped(expr, _) => {
Self::translate_expr(*expr, &mut ops);
}
Expression::Fail(def) => {
Self::translate_expr(*def.message, &mut ops);
ops.push(Op::Bang);
}
Expression::Format(def) => {
// TODO(jwall): It would actually be safer if this was happening
// when we create the format def instead of here.
match def.args {
FormatArgs::List(mut elems) => {
let formatter = SimpleTemplate::new();
// TODO(jwall): This really belongs in a preprocess step
// before here.
let mut parts = formatter.parse(&def.template).unwrap();
// We need to push process these in reverse order for the
// vm to process things correctly;
elems.reverse();
parts.reverse();
let mut elems_iter = elems.drain(0..);
let mut parts_iter = parts.drain(0..);
Self::translate_template_part(
parts_iter.next().unwrap(),
&mut elems_iter,
&mut ops,
true,
);
for p in parts_iter {
Self::translate_template_part(p, &mut elems_iter, &mut ops, true);
ops.push(Op::Add);
}
}
FormatArgs::Single(expr) => {
let formatter = ExpressionTemplate::new();
// TODO(jwall): This really belongs in a preprocess step
// before here.
let mut parts = formatter.parse(&def.template).unwrap();
parts.reverse();
let mut parts_iter = parts.drain(0..);
// TODO(jwall): We need to assume there is a new scope introduced now
ops.push(Op::Noop);
let scope_idx = ops.len() - 1;
// Add our item binding shadowing any binding that already
// existed.
ops.push(Op::Sym("item".to_owned()));
Self::translate_expr(*expr, &mut ops);
ops.push(Op::BindOver);
let mut elems = Vec::new();
let mut elems_iter = elems.drain(0..);
Self::translate_template_part(
parts_iter.next().unwrap(),
&mut elems_iter,
&mut ops,
false,
);
for p in parts_iter {
Self::translate_template_part(p, &mut elems_iter, &mut ops, false);
ops.push(Op::Add);
}
ops.push(Op::Return);
let jump_idx = (ops.len() - 1 - scope_idx) as i32;
ops[scope_idx] = Op::NewScope(jump_idx);
}
}
}
Expression::Func(def) => {
ops.push(Op::InitList);
for b in def.argdefs {
ops.push(Op::Sym(b.val));
ops.push(Op::Element);
}
ops.push(Op::Noop);
let idx = ops.len() - 1;
Self::translate_expr(*def.fields, &mut ops);
ops.push(Op::Return);
let jptr = ops.len() - 1 - idx;
ops[idx] = Op::Func(jptr as i32);
}
Expression::FuncOp(_) => unimplemented!("FuncOp expressions are not implmented yet"),
Expression::Import(def) => {
ops.push(Op::Val(Primitive::Str(def.path.fragment)));
ops.push(Op::Runtime(Hook::Import));
}
Expression::Include(def) => {
ops.push(Op::Val(Primitive::Str(def.typ.fragment)));
ops.push(Op::Val(Primitive::Str(def.path.fragment)));
ops.push(Op::Runtime(Hook::Include));
}
Expression::Module(def) => {
let argset = def.arg_set;
let out_expr = def.out_expr;
let stmts = def.statements;
// Init our module tuple bindings
ops.push(Op::InitTuple);
for (t, e) in argset {
ops.push(Op::Sym(t.fragment));
Self::translate_expr(e, &mut ops);
ops.push(Op::Field);
}
// If there is one then emit our return expression
if let Some(expr) = out_expr {
// Insert placeholder until we know jptr for this thunk
ops.push(Op::Noop);
let idx = ops.len() - 1;
Self::translate_expr(*expr, &mut ops);
ops.push(Op::Return);
let jptr = ops.len() - idx - 1;
ops[idx] = Op::InitThunk(jptr as i32);
}
// Insert a placeholder Opcode until we know jptr for the
// module.
ops.push(Op::Noop);
let idx = ops.len() - 1;
// Bind our mod tuple.
ops.push(Op::Bind);
// emit all of our statements;
Self::translate_stmts(stmts, &mut ops);
// Return from the module
ops.push(Op::Return);
let jptr = ops.len() - idx - 1;
ops[idx] = Op::Module(jptr as i32);
}
Expression::Not(def) => {
Self::translate_expr(*def.expr, &mut ops);
ops.push(Op::Not);
}
Expression::Range(_) => unimplemented!("Range expressions are not implmented yet"),
Expression::Select(_) => unimplemented!("Select expressions are not implmented yet"),
Expression::Call(def) => {
// first push our arguments.
for e in def.arglist {
Self::translate_expr(e, &mut ops);
}
// then push the func reference
Self::translate_value(def.funcref, &mut ops);
ops.push(Op::FCall);
dbg!(ops);
}
Expression::Copy(def) => {
ops.push(Op::InitTuple);
for (t, e) in def.fields {
ops.push(Op::Sym(t.fragment));
Self::translate_expr(e, &mut ops);
ops.push(Op::Field);
}
Self::translate_value(def.selector, &mut ops);
ops.push(Op::Cp);
}
Expression::Debug(_) => unimplemented!("Debug expressions are not implmented yet"),
}
}
fn translate_template_part<EI: Iterator<Item = Expression>>(
part: TemplatePart,
elems: &mut EI,
mut ops: &mut Vec<Op>,
place_holder: bool,
) {
match part {
TemplatePart::Str(s) => {
ops.push(Op::Val(Primitive::Str(s.into_iter().collect())));
}
TemplatePart::PlaceHolder(_idx) => {
if !place_holder {
// In theory this should never be reachable
unreachable!();
} else {
Self::translate_expr(elems.next().unwrap(), &mut ops);
ops.push(Op::Render);
}
}
TemplatePart::Expression(expr) => {
if place_holder {
unreachable!();
} else {
Self::translate_expr(expr, &mut ops);
ops.push(Op::Render);
}
}
}
}
fn translate_value(value: Value, mut ops: &mut Vec<Op>) {
match value {
Value::Int(i) => ops.push(Op::Val(Primitive::Int(i.val))),
Value::Float(f) => ops.push(Op::Val(Primitive::Float(f.val))),
Value::Str(s) => ops.push(Op::Val(Primitive::Str(s.val))),
Value::Empty(_pos) => ops.push(Op::Val(Primitive::Empty)),
Value::Boolean(b) => ops.push(Op::Val(Primitive::Bool(b.val))),
Value::Symbol(s) => {
ops.push(Op::DeRef(s.val));
}
Value::Tuple(flds) => {
ops.push(Op::InitTuple);
for (k, v) in flds.val {
ops.push(Op::Sym(k.fragment));
Self::translate_expr(v, &mut ops);
ops.push(Op::Field);
}
}
Value::List(els) => {
ops.push(Op::InitList);
for el in els.elems {
Self::translate_expr(el, &mut ops);
ops.push(Op::Element);
}
}
}
}
}