ucg/src/build/mod.rs

1331 lines
47 KiB
Rust

// Copyright 2017 Jeremy Wall <jeremy@marzhillstudios.com>
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! The build stage of the ucg compiler.
use std::cell::RefCell;
use std::collections::hash_map::Entry;
use std::collections::{HashMap, VecDeque};
use std::env;
use std::error::Error;
use std::fs::File;
use std::io::Read;
use std::ops::Deref;
use std::path::PathBuf;
use std::rc::Rc;
use std::string::ToString;
use simple_error;
use crate::ast::*;
use crate::error;
use crate::format;
use crate::iter::OffsetStrIter;
use crate::parse::parse;
pub mod assets;
pub mod ir;
pub use self::ir::Val;
impl MacroDef {
/// Expands a ucg Macro using the given arguments into a new Tuple.
pub fn eval(
&self,
root: PathBuf,
parent_builder: &Builder,
mut args: Vec<Rc<Val>>,
) -> Result<Vec<(PositionedItem<String>, Rc<Val>)>, Box<Error>> {
// Error conditions. If the args don't match the length and types of the argdefs then this is
// macro call error.
if args.len() > self.argdefs.len() {
return Err(Box::new(error::BuildError::new(
format!(
"Macro called with too many args in file: {}",
root.to_string_lossy()
),
error::ErrorType::BadArgLen,
self.pos.clone(),
)));
}
// If the args don't match the types required by the expressions then that is a TypeFail.
// If the expressions reference Symbols not defined in the MacroDef that is also an error.
// TODO(jwall): We should probably enforce that the Expression Symbols must be in argdefs rules
// at Macro definition time not evaluation time.
let mut scope = HashMap::<PositionedItem<String>, Rc<Val>>::new();
for (i, arg) in args.drain(0..).enumerate() {
scope.entry(self.argdefs[i].clone()).or_insert(arg.clone());
}
let mut b = parent_builder.clone_builder(root);
b.set_scope(scope);
let mut result: Vec<(PositionedItem<String>, Rc<Val>)> = Vec::new();
for &(ref key, ref expr) in self.fields.iter() {
// We clone the expressions here because this macro may be consumed
// multiple times in the future.
let val = b.eval_expr(expr)?;
result.push((key.into(), val.clone()));
}
Ok(result)
}
}
/// The result of a build.
type BuildResult = Result<(), Box<Error>>;
/// Defines a set of values in a parsed file.
type ValueMap = HashMap<PositionedItem<String>, Rc<Val>>;
/// AssertCollector collects the results of assertions in the UCG AST.
pub struct AssertCollector {
pub success: bool,
pub summary: String,
pub failures: String,
}
/// Builder handles building ucg code for a single file.
pub struct Builder<'a> {
file: PathBuf,
import_path: &'a Vec<PathBuf>,
validate_mode: bool,
pub assert_collector: AssertCollector,
strict: bool,
env: Rc<Val>,
// NOTE(jwall): We use interior mutability here because we need
// our asset cache to be shared by multiple different sub-builders.
// We use Rc to handle the reference counting for us and we use
// RefCell to give us interior mutability. This sacrifices our
// compile time memory safety for runtime checks. However it's
// acceptable in this case since I can't figure out a better way to
// handle it.
// The assets are other parsed files from import statements. They
// are keyed by the canonicalized import path. This acts as a cache
// so multiple imports of the same file don't have to be parsed
// multiple times.
assets: Rc<RefCell<assets::Cache>>,
/// build_output is our built output.
build_output: ValueMap,
/// last is the result of the last statement.
import_stack: Vec<String>,
pub stack: Option<Vec<Rc<Val>>>,
pub is_module: bool,
pub last: Option<Rc<Val>>,
pub out_lock: Option<(String, Rc<Val>)>,
}
macro_rules! eval_binary_expr {
($case:pat, $pos:ident, $rside:ident, $result:expr, $msg:expr) => {
match $rside.as_ref() {
$case => {
return Ok(Rc::new($result));
}
val => {
return Err(Box::new(error::BuildError::new(
format!("Expected {} but got {}", $msg, val),
error::ErrorType::TypeFail,
$pos.clone(),
)));
}
}
};
}
impl<'a> Builder<'a> {
/// Constructs a new Builder.
pub fn new<P: Into<PathBuf>>(
file: P,
import_paths: &'a Vec<PathBuf>,
cache: Rc<RefCell<assets::Cache>>,
) -> Self {
Self::new_with_scope(file, import_paths, cache, HashMap::new())
}
/// Constructs a new Builder with a provided scope.
pub fn new_with_scope<P: Into<PathBuf>>(
root: P,
import_paths: &'a Vec<PathBuf>,
cache: Rc<RefCell<assets::Cache>>,
scope: ValueMap,
) -> Self {
let env_vars: Vec<(String, String)> = env::vars().collect();
Self::new_with_env_and_scope(
root,
import_paths,
cache,
scope,
Rc::new(Val::Env(env_vars)),
)
}
pub fn new_with_env_and_scope<P: Into<PathBuf>>(
file: P,
import_paths: &'a Vec<PathBuf>,
cache: Rc<RefCell<assets::Cache>>,
scope: ValueMap,
env: Rc<Val>,
) -> Self {
let file = file.into();
Builder {
// Our import stack is initialized with ourself.
import_stack: vec![file.to_string_lossy().to_string()],
file: file,
import_path: import_paths,
validate_mode: false,
assert_collector: AssertCollector {
success: true,
summary: String::new(),
failures: String::new(),
},
env: env,
strict: true,
assets: cache,
build_output: scope,
out_lock: None,
stack: None,
is_module: false,
last: None,
}
}
pub fn clone_builder<P: Into<PathBuf>>(&self, file: P) -> Self {
Builder {
// Our import stack is initialized with ourself.
import_stack: self.import_stack.clone(),
file: file.into(),
import_path: self.import_path,
validate_mode: false,
assert_collector: AssertCollector {
success: true,
summary: String::new(),
failures: String::new(),
},
env: self.env.clone(),
strict: true,
assets: self.assets.clone(),
build_output: HashMap::new(),
out_lock: None,
stack: None,
is_module: false,
last: None,
}
}
pub fn set_scope(&mut self, scope: ValueMap) {
self.build_output = scope;
}
pub fn set_strict(&mut self, to: bool) {
self.strict = to;
}
pub fn prepend_import_stack(&mut self, imports: &Vec<String>) {
let mut new_stack = self.import_stack.clone();
new_stack.append(imports.clone().as_mut());
self.import_stack = new_stack;
}
// TOOD(jwall): This needs some unit tests.
fn tuple_to_val(&mut self, fields: &Vec<(Token, Expression)>) -> Result<Rc<Val>, Box<Error>> {
let mut new_fields = Vec::<(PositionedItem<String>, Rc<Val>)>::new();
for &(ref name, ref expr) in fields.iter() {
let val = self.eval_expr(expr)?;
new_fields.push((name.into(), val));
}
Ok(Rc::new(Val::Tuple(new_fields)))
}
fn list_to_val(&mut self, def: &ListDef) -> Result<Rc<Val>, Box<Error>> {
let mut vals = Vec::new();
for expr in def.elems.iter() {
vals.push(self.eval_expr(expr)?);
}
Ok(Rc::new(Val::List(vals)))
}
fn value_to_val(&mut self, v: &Value) -> Result<Rc<Val>, Box<Error>> {
match v {
&Value::Empty(_) => Ok(Rc::new(Val::Empty)),
&Value::Boolean(ref b) => Ok(Rc::new(Val::Boolean(b.val))),
&Value::Int(ref i) => Ok(Rc::new(Val::Int(i.val))),
&Value::Float(ref f) => Ok(Rc::new(Val::Float(f.val))),
&Value::Str(ref s) => Ok(Rc::new(Val::Str(s.val.to_string()))),
&Value::Symbol(ref s) => {
self.lookup_sym(&(s.into()))
.ok_or(Box::new(error::BuildError::new(
format!("Unable to find binding {}", s.val,),
error::ErrorType::NoSuchSymbol,
v.pos().clone(),
)))
}
&Value::List(ref def) => self.list_to_val(def),
&Value::Tuple(ref tuple) => self.tuple_to_val(&tuple.val),
&Value::Selector(ref selector_list_node) => {
self.lookup_selector(&selector_list_node.sel)
}
}
}
/// Returns a Val by name from previously built UCG.
pub fn get_out_by_name(&self, name: &str) -> Option<Rc<Val>> {
let key = PositionedItem {
pos: Position::new(0, 0, 0),
val: name.to_string(),
};
self.lookup_sym(&key)
}
/// Puts the builder in validation mode.
///
/// Among other things this means that assertions will be evaluated and their results
/// will be saved in a report for later output.
pub fn enable_validate_mode(&mut self) {
self.validate_mode = true;
}
/// Builds a list of parsed UCG Statements.
pub fn eval_stmts(&mut self, ast: &Vec<Statement>) -> BuildResult {
for stmt in ast.iter() {
self.eval_stmt(stmt)?;
}
Ok(())
}
fn eval_input(&mut self, input: OffsetStrIter) -> Result<Rc<Val>, Box<Error>> {
match parse(input.clone()) {
Ok(stmts) => {
//panic!("Successfully parsed {}", input);
let mut out: Option<Rc<Val>> = None;
for stmt in stmts.iter() {
out = Some(self.eval_stmt(stmt)?);
}
match out {
None => return Ok(Rc::new(Val::Empty)),
Some(val) => Ok(val),
}
}
Err(err) => Err(Box::new(error::BuildError::new(
format!("{}", err,),
error::ErrorType::ParseError,
(&input).into(),
))),
}
}
/// Evaluate an input string as UCG.
pub fn eval_string(&mut self, input: &str) -> Result<Rc<Val>, Box<Error>> {
self.eval_input(OffsetStrIter::new(input))
}
/// Builds a ucg file at the named path.
pub fn build(&mut self) -> BuildResult {
let mut f = File::open(&self.file)?;
let mut s = String::new();
f.read_to_string(&mut s)?;
let eval_result = self.eval_string(&s);
match eval_result {
Ok(v) => {
self.last = Some(v);
Ok(())
}
Err(e) => {
let err = simple_error::SimpleError::new(
format!(
"Error building file: {}\n{}",
self.file.to_string_lossy(),
e.as_ref()
)
.as_ref(),
);
Err(Box::new(err))
}
}
}
fn check_reserved_word(name: &str) -> bool {
match name {
"self" | "assert" | "true" | "false" | "let" | "import" | "as" | "select" | "macro"
| "module" | "env" | "map" | "filter" | "NULL" | "out" => true,
_ => false,
}
}
fn detect_import_cycle(&self, path: &str) -> bool {
self.import_stack.iter().find(|p| *p == path).is_some()
}
fn eval_import(&mut self, def: &ImportDef) -> Result<Rc<Val>, Box<Error>> {
let sym = &def.name;
if Self::check_reserved_word(&sym.fragment) {
return Err(Box::new(error::BuildError::new(
format!(
"Import {} binding collides with reserved word",
sym.fragment
),
error::ErrorType::ReservedWordError,
sym.pos.clone(),
)));
}
// Try a relative path first.
let mut normalized = self.file.parent().unwrap().to_path_buf();
let import_path = PathBuf::from(&def.path.fragment);
if import_path.is_relative() {
normalized.push(&import_path);
// First see if the normalized file exists or not.
if !normalized.exists() {
// If it does not then look for it in the list of import_paths
for mut p in self.import_path.iter().cloned() {
p.push(&import_path);
if p.exists() {
normalized = p;
break;
}
}
}
} else {
normalized = import_path;
}
normalized = normalized.canonicalize()?;
if self.detect_import_cycle(normalized.to_string_lossy().as_ref()) {
return Err(Box::new(error::BuildError::new(
format!(
"Import Cycle Detected!!!! {} is already in import stack: {:?}",
normalized.to_string_lossy(),
self.import_stack,
),
error::ErrorType::Unsupported,
sym.pos.clone(),
)));
}
// Introduce a scope so the above borrow is dropped before we modify
// the cache below.
// Only parse the file once on import.
let maybe_asset = self.assets.borrow().get(&normalized)?;
let result = match maybe_asset {
Some(v) => v.clone(),
None => {
let mut b = self.clone_builder(normalized.clone());
b.build()?;
b.get_outputs_as_val()
}
};
let key = sym.into();
if self.build_output.contains_key(&key) {
return Err(Box::new(error::BuildError::new(
format!("Binding for import name {} already exists", sym.fragment),
error::ErrorType::DuplicateBinding,
def.path.pos.clone(),
)));
}
self.build_output.insert(key, result.clone());
let mut mut_assets_cache = self.assets.borrow_mut();
mut_assets_cache.stash(normalized.clone(), result.clone())?;
return Ok(result);
}
fn eval_let(&mut self, def: &LetDef) -> Result<Rc<Val>, Box<Error>> {
let val = self.eval_expr(&def.value)?;
let name = &def.name;
// TODO(jwall): Enforce the reserved words list here.
if Self::check_reserved_word(&name.fragment) {
return Err(Box::new(error::BuildError::new(
format!("Let {} binding collides with reserved word", name.fragment),
error::ErrorType::ReservedWordError,
name.pos.clone(),
)));
}
match self.build_output.entry(name.into()) {
Entry::Occupied(e) => {
return Err(Box::new(error::BuildError::new(
format!(
"Binding \
for {:?} already \
exists",
e.key(),
),
error::ErrorType::DuplicateBinding,
def.name.pos.clone(),
)));
}
Entry::Vacant(e) => {
e.insert(val.clone());
}
}
Ok(val)
}
fn eval_stmt(&mut self, stmt: &Statement) -> Result<Rc<Val>, Box<Error>> {
match stmt {
&Statement::Assert(ref expr) => self.build_assert(&expr),
&Statement::Let(ref def) => self.eval_let(def),
&Statement::Import(ref def) => self.eval_import(def),
&Statement::Expression(ref expr) => self.eval_expr(expr),
// Only one output can be used per file. Right now we enforce this by
// having a single builder per file.
&Statement::Output(ref typ, ref expr) => {
if let None = self.out_lock {
let val = self.eval_expr(expr)?;
self.out_lock = Some((typ.fragment.to_string(), val.clone()));
Ok(val)
} else {
Err(Box::new(error::BuildError::new(
format!("You can only have one output per file."),
error::ErrorType::DuplicateBinding,
typ.pos.clone(),
)))
}
}
}
}
fn lookup_sym(&self, sym: &PositionedItem<String>) -> Option<Rc<Val>> {
if &sym.val == "env" {
return Some(self.env.clone());
}
if &sym.val == "self" {
return self.peek_val();
}
if self.build_output.contains_key(sym) {
return Some(self.build_output[sym].clone());
}
None
}
fn find_in_fieldlist(
target: &str,
fs: &Vec<(PositionedItem<String>, Rc<Val>)>,
) -> Option<Rc<Val>> {
for (key, val) in fs.iter().cloned() {
if target == &key.val {
return Some(val.clone());
}
}
return None;
}
fn lookup_in_env(
&self,
search: &Token,
stack: &mut VecDeque<Rc<Val>>,
fs: &Vec<(String, String)>,
) -> Result<(), Box<Error>> {
for &(ref name, ref val) in fs.iter() {
if &search.fragment == name {
stack.push_back(Rc::new(Val::Str(val.clone())));
return Ok(());
} else if !self.strict {
stack.push_back(Rc::new(Val::Empty));
return Ok(());
}
}
return Err(Box::new(error::BuildError::new(
format!("Environment Variable {} not set", search.fragment),
error::ErrorType::NoSuchSymbol,
search.pos.clone(),
)));
}
fn lookup_in_tuple(
&self,
stack: &mut VecDeque<Rc<Val>>,
sl: &SelectorList,
next: (&Position, &str),
fs: &Vec<(PositionedItem<String>, Rc<Val>)>,
) -> Result<(), Box<Error>> {
if let Some(vv) = Self::find_in_fieldlist(next.1, fs) {
stack.push_back(vv.clone());
} else {
return Err(Box::new(error::BuildError::new(
format!(
"Unable to \
match element {} in selector \
path [{}]",
next.1, sl,
),
error::ErrorType::NoSuchSymbol,
next.0.clone(),
)));
}
Ok(())
}
fn lookup_in_list(
&self,
stack: &mut VecDeque<Rc<Val>>,
sl: &SelectorList,
next: (&Position, &str),
elems: &Vec<Rc<Val>>,
) -> Result<(), Box<Error>> {
let idx = next.1.parse::<usize>()?;
if idx < elems.len() {
stack.push_back(elems[idx].clone());
} else {
return Err(Box::new(error::BuildError::new(
format!(
"Unable to \
match element {} in selector \
path [{}]",
next.1, sl,
),
error::ErrorType::NoSuchSymbol,
next.0.clone(),
)));
}
Ok(())
}
fn lookup_selector(&mut self, sl: &SelectorList) -> Result<Rc<Val>, Box<Error>> {
let first = self.eval_expr(&sl.head)?;
// First we ensure that the result is a tuple or a list.
let mut stack = VecDeque::new();
match first.as_ref() {
&Val::Tuple(_) => {
stack.push_back(first.clone());
}
&Val::List(_) => {
stack.push_back(first.clone());
}
&Val::Env(_) => {
stack.push_back(first.clone());
}
_ => {
// noop
}
}
if let &Some(ref tail) = &sl.tail {
if tail.len() == 0 {
return Ok(first);
}
let mut it = tail.iter().peekable();
loop {
let vref = stack.pop_front().unwrap();
if it.peek().is_none() {
return Ok(vref.clone());
}
// This unwrap is safe because we already checked for
// None above.
let next = it.next().unwrap();
match vref.as_ref() {
&Val::Tuple(ref fs) => {
self.lookup_in_tuple(&mut stack, sl, (&next.pos, &next.fragment), fs)?;
continue;
}
&Val::Env(ref fs) => {
self.lookup_in_env(&next, &mut stack, fs)?;
continue;
}
&Val::List(ref elems) => {
self.lookup_in_list(&mut stack, sl, (&next.pos, &next.fragment), elems)?;
continue;
}
_ => {
return Err(Box::new(error::BuildError::new(
format!("{} is not a Tuple or List", vref),
error::ErrorType::TypeFail,
next.pos.clone(),
)));
}
}
}
} else {
return Ok(first);
}
}
fn add_vals(
&self,
pos: &Position,
left: Rc<Val>,
right: Rc<Val>,
) -> Result<Rc<Val>, Box<Error>> {
match *left {
Val::Int(i) => {
eval_binary_expr!(&Val::Int(ii), pos, right, Val::Int(i + ii), "Integer")
}
Val::Float(f) => {
eval_binary_expr!(&Val::Float(ff), pos, right, Val::Float(f + ff), "Float")
}
Val::Str(ref s) => match right.as_ref() {
&Val::Str(ref ss) => {
return Ok(Rc::new(Val::Str([s.to_string(), ss.clone()].concat())))
}
val => {
return Err(Box::new(error::BuildError::new(
format!(
"Expected \
String \
but got \
{:?}",
val
),
error::ErrorType::TypeFail,
pos.clone(),
)))
}
},
Val::List(ref l) => match right.as_ref() {
&Val::List(ref r) => {
let mut new_vec = Vec::new();
new_vec.extend(l.iter().cloned());
new_vec.extend(r.iter().cloned());
return Ok(Rc::new(Val::List(new_vec)));
}
val => {
return Err(Box::new(error::BuildError::new(
format!(
"Expected \
List \
but got \
{:?}",
val
),
error::ErrorType::TypeFail,
pos.clone(),
)))
}
},
ref expr => {
return Err(Box::new(error::BuildError::new(
format!("{} does not support the '+' operation", expr.type_name()),
error::ErrorType::Unsupported,
pos.clone(),
)))
}
}
}
fn subtract_vals(
&self,
pos: &Position,
left: Rc<Val>,
right: Rc<Val>,
) -> Result<Rc<Val>, Box<Error>> {
match *left {
Val::Int(i) => {
eval_binary_expr!(&Val::Int(ii), pos, right, Val::Int(i - ii), "Integer")
}
Val::Float(f) => {
eval_binary_expr!(&Val::Float(ff), pos, right, Val::Float(f - ff), "Float")
}
ref expr => {
return Err(Box::new(error::BuildError::new(
format!("{} does not support the '-' operation", expr.type_name()),
error::ErrorType::Unsupported,
pos.clone(),
)))
}
}
}
fn multiply_vals(
&self,
pos: &Position,
left: Rc<Val>,
right: Rc<Val>,
) -> Result<Rc<Val>, Box<Error>> {
match *left {
Val::Int(i) => {
eval_binary_expr!(&Val::Int(ii), pos, right, Val::Int(i * ii), "Integer")
}
Val::Float(f) => {
eval_binary_expr!(&Val::Float(ff), pos, right, Val::Float(f * ff), "Float")
}
ref expr => {
return Err(Box::new(error::BuildError::new(
format!("{} does not support the '*' operation", expr.type_name()),
error::ErrorType::Unsupported,
pos.clone(),
)))
}
}
}
fn divide_vals(
&self,
pos: &Position,
left: Rc<Val>,
right: Rc<Val>,
) -> Result<Rc<Val>, Box<Error>> {
match *left {
Val::Int(i) => {
eval_binary_expr!(&Val::Int(ii), pos, right, Val::Int(i / ii), "Integer")
}
Val::Float(f) => {
eval_binary_expr!(&Val::Float(ff), pos, right, Val::Float(f / ff), "Float")
}
ref expr => {
return Err(Box::new(error::BuildError::new(
format!("{} does not support the '*' operation", expr.type_name()),
error::ErrorType::Unsupported,
pos.clone(),
)))
}
}
}
fn do_deep_equal(
&self,
pos: &Position,
left: Rc<Val>,
right: Rc<Val>,
) -> Result<Rc<Val>, Box<Error>> {
Ok(Rc::new(Val::Boolean(
left.equal(right.as_ref(), pos.clone())?,
)))
}
fn do_not_deep_equal(
&self,
pos: &Position,
left: Rc<Val>,
right: Rc<Val>,
) -> Result<Rc<Val>, Box<Error>> {
Ok(Rc::new(Val::Boolean(
!left.equal(right.as_ref(), pos.clone())?,
)))
}
fn do_gt(&self, pos: &Position, left: Rc<Val>, right: Rc<Val>) -> Result<Rc<Val>, Box<Error>> {
// first ensure that left and right are numeric vals of the same type.
if let &Val::Int(ref l) = left.as_ref() {
if let &Val::Int(ref r) = right.as_ref() {
return Ok(Rc::new(Val::Boolean(l > r)));
}
}
if let &Val::Float(ref l) = left.as_ref() {
if let &Val::Float(ref r) = right.as_ref() {
return Ok(Rc::new(Val::Boolean(l > r)));
}
}
Err(Box::new(error::BuildError::new(
format!(
"Incompatible types for numeric comparison {} with {}",
left.type_name(),
right.type_name()
),
error::ErrorType::TypeFail,
pos.clone(),
)))
}
fn do_lt(&self, pos: &Position, left: Rc<Val>, right: Rc<Val>) -> Result<Rc<Val>, Box<Error>> {
// first ensure that left and right are numeric vals of the same type.
if let &Val::Int(ref l) = left.as_ref() {
if let &Val::Int(ref r) = right.as_ref() {
return Ok(Rc::new(Val::Boolean(l < r)));
}
}
if let &Val::Float(ref l) = left.as_ref() {
if let &Val::Float(ref r) = right.as_ref() {
return Ok(Rc::new(Val::Boolean(l < r)));
}
}
Err(Box::new(error::BuildError::new(
format!(
"Incompatible types for numeric comparison {} with {}",
left.type_name(),
right.type_name()
),
error::ErrorType::TypeFail,
pos.clone(),
)))
}
fn do_ltequal(
&self,
pos: &Position,
left: Rc<Val>,
right: Rc<Val>,
) -> Result<Rc<Val>, Box<Error>> {
if let &Val::Int(ref l) = left.as_ref() {
if let &Val::Int(ref r) = right.as_ref() {
return Ok(Rc::new(Val::Boolean(l <= r)));
}
}
if let &Val::Float(ref l) = left.as_ref() {
if let &Val::Float(ref r) = right.as_ref() {
return Ok(Rc::new(Val::Boolean(l <= r)));
}
}
Err(Box::new(error::BuildError::new(
format!(
"Incompatible types for numeric comparison {} with {}",
left.type_name(),
right.type_name()
),
error::ErrorType::TypeFail,
pos.clone(),
)))
}
fn do_gtequal(
&self,
pos: &Position,
left: Rc<Val>,
right: Rc<Val>,
) -> Result<Rc<Val>, Box<Error>> {
if let &Val::Int(ref l) = left.as_ref() {
if let &Val::Int(ref r) = right.as_ref() {
return Ok(Rc::new(Val::Boolean(l >= r)));
}
}
if let &Val::Float(ref l) = left.as_ref() {
if let &Val::Float(ref r) = right.as_ref() {
return Ok(Rc::new(Val::Boolean(l >= r)));
}
}
Err(Box::new(error::BuildError::new(
format!(
"Incompatible types for numeric comparison {} with {}",
left.type_name(),
right.type_name()
),
error::ErrorType::TypeFail,
pos.clone(),
)))
}
fn eval_binary(&mut self, def: &BinaryOpDef) -> Result<Rc<Val>, Box<Error>> {
let kind = &def.kind;
let left = self.eval_expr(&def.left)?;
let right = self.eval_expr(&def.right)?;
match kind {
&BinaryExprType::Add => self.add_vals(&def.pos, left, right),
&BinaryExprType::Sub => self.subtract_vals(&def.pos, left, right),
&BinaryExprType::Mul => self.multiply_vals(&def.pos, left, right),
&BinaryExprType::Div => self.divide_vals(&def.pos, left, right),
}
}
fn eval_compare(&mut self, def: &ComparisonDef) -> Result<Rc<Val>, Box<Error>> {
let kind = &def.kind;
let left = self.eval_expr(&def.left)?;
let right = self.eval_expr(&def.right)?;
match kind {
&CompareType::Equal => self.do_deep_equal(&def.pos, left, right),
&CompareType::GT => self.do_gt(&def.pos, left, right),
&CompareType::LT => self.do_lt(&def.pos, left, right),
&CompareType::GTEqual => self.do_gtequal(&def.pos, left, right),
&CompareType::LTEqual => self.do_ltequal(&def.pos, left, right),
&CompareType::NotEqual => self.do_not_deep_equal(&def.pos, left, right),
}
}
fn push_val(&mut self, tuple: Rc<Val>) {
if let Some(ref mut v) = self.stack {
v.push(tuple);
} else {
let mut v = Vec::new();
v.push(tuple);
self.stack = Some(v);
}
}
fn pop_val(&mut self) -> Option<Rc<Val>> {
if let Some(ref mut v) = self.stack {
v.pop()
} else {
None
}
}
fn peek_val(&self) -> Option<Rc<Val>> {
if let Some(ref v) = self.stack {
v.first().map(|v| v.clone())
} else {
None
}
}
fn get_outputs_as_val(&mut self) -> Rc<Val> {
let fields: Vec<(PositionedItem<String>, Rc<Val>)> = self.build_output.drain().collect();
Rc::new(Val::Tuple(fields))
}
fn copy_from_base(
&mut self,
src_fields: &Vec<(PositionedItem<String>, Rc<Val>)>,
overrides: &Vec<(Token, Expression)>,
) -> Result<Rc<Val>, Box<Error>> {
let mut m = HashMap::<PositionedItem<String>, (i32, Rc<Val>)>::new();
// loop through fields and build up a hashmap
let mut count = 0;
for &(ref key, ref val) in src_fields.iter() {
if let Entry::Vacant(v) = m.entry(key.clone()) {
v.insert((count, val.clone()));
count += 1;
} else {
self.pop_val();
return Err(Box::new(error::BuildError::new(
format!(
"Duplicate \
field: {} in \
tuple",
key.val
),
error::ErrorType::TypeFail,
key.pos.clone(),
)));
}
}
for &(ref key, ref val) in overrides.iter() {
let expr_result = self.eval_expr(val)?;
match m.entry(key.into()) {
// brand new field here.
Entry::Vacant(v) => {
v.insert((count, expr_result));
count += 1;
}
Entry::Occupied(mut v) => {
// overriding field here.
// Ensure that the new type matches the old type.
let src_val = v.get().clone();
if src_val.1.type_equal(&expr_result)
|| src_val.1.is_empty()
|| expr_result.is_empty()
{
v.insert((src_val.0, expr_result));
} else {
self.pop_val();
return Err(Box::new(error::BuildError::new(
format!(
"Expected type {} for field {} but got {}",
src_val.1.type_name(),
key.fragment,
expr_result.type_name()
),
error::ErrorType::TypeFail,
key.pos.clone(),
)));
}
}
};
}
self.pop_val();
let mut new_fields: Vec<(PositionedItem<String>, (i32, Rc<Val>))> = m.drain().collect();
// We want to maintain our order for the fields to make comparing tuples
// easier in later code. So we sort by the field order before constructing a new tuple.
new_fields.sort_by(|a, b| {
let ta = a.1.clone();
let tb = b.1.clone();
ta.0.cmp(&tb.0)
});
return Ok(Rc::new(Val::Tuple(
new_fields
.iter()
.map(|a| {
let first = a.0.clone();
let t = a.1.clone();
(first, t.1)
})
.collect(),
)));
}
fn eval_copy(&mut self, def: &CopyDef) -> Result<Rc<Val>, Box<Error>> {
let v = self.lookup_selector(&def.selector.sel)?;
if let &Val::Tuple(ref src_fields) = v.as_ref() {
self.push_val(v.clone());
return self.copy_from_base(&src_fields, &def.fields);
}
if let &Val::Module(ref mod_def) = v.as_ref() {
let maybe_tpl = mod_def.clone().arg_tuple.unwrap().clone();
if let &Val::Tuple(ref src_fields) = maybe_tpl.as_ref() {
// 1. First we create a builder.
let mut b = self.clone_builder(self.file.clone());
b.is_module = true;
// 2. We construct an argument tuple by copying from the defs
// argset.
// Push our base tuple on the stack so the copy can use
// self to reference it.
b.push_val(maybe_tpl.clone());
let mod_args = self.copy_from_base(src_fields, &def.fields)?;
// put our copied parameters tuple in our builder under the mod key.
let mod_key =
PositionedItem::new_with_pos(String::from("mod"), Position::new(0, 0, 0));
match b.build_output.entry(mod_key) {
Entry::Occupied(e) => {
return Err(Box::new(error::BuildError::new(
format!(
"Binding \
for {:?} already \
exists in module",
e.key(),
),
error::ErrorType::DuplicateBinding,
mod_def.pos.clone(),
)));
}
Entry::Vacant(e) => {
e.insert(mod_args.clone());
}
}
// 4. Evaluate all the statements using the builder.
b.eval_stmts(&mod_def.statements)?;
// 5. Take all of the bindings in the module and construct a new
// tuple using them.
return Ok(b.get_outputs_as_val());
} else {
return Err(Box::new(error::BuildError::new(
format!(
"Weird value stored in our module parameters slot {:?}",
mod_def.arg_tuple
),
error::ErrorType::TypeFail,
def.selector.pos.clone(),
)));
}
}
Err(Box::new(error::BuildError::new(
format!("Expected Tuple or Module got {}", v),
error::ErrorType::TypeFail,
def.selector.pos.clone(),
)))
}
fn eval_format(&mut self, def: &FormatDef) -> Result<Rc<Val>, Box<Error>> {
let tmpl = &def.template;
let args = &def.args;
let mut vals = Vec::new();
for v in args.iter() {
let rcv = self.eval_expr(v)?;
vals.push(rcv.deref().clone());
}
let formatter = format::Formatter::new(tmpl.clone(), vals);
Ok(Rc::new(Val::Str(formatter.render(&def.pos)?)))
}
// FIXME(jwall): Handle module calls as well?
fn eval_call(&mut self, def: &CallDef) -> Result<Rc<Val>, Box<Error>> {
let sel = &def.macroref;
let args = &def.arglist;
let v = self.lookup_selector(&sel.sel)?;
if let &Val::Macro(ref m) = v.deref() {
// Congratulations this is actually a macro.
let mut argvals: Vec<Rc<Val>> = Vec::new();
for arg in args.iter() {
argvals.push(self.eval_expr(arg)?);
}
let fields = m.eval(self.file.clone(), self, argvals)?;
return Ok(Rc::new(Val::Tuple(fields)));
}
Err(Box::new(error::BuildError::new(
// We should pretty print the selectors here.
format!("{} is not a Macro", v),
error::ErrorType::TypeFail,
def.pos.clone(),
)))
}
fn eval_macro_def(&self, def: &MacroDef) -> Result<Rc<Val>, Box<Error>> {
match def.validate_symbols() {
Ok(()) => Ok(Rc::new(Val::Macro(def.clone()))),
Err(set) => Err(Box::new(error::BuildError::new(
format!(
"Macro has the following \
undefined symbols: {:?}",
set
),
error::ErrorType::NoSuchSymbol,
def.pos.clone(),
))),
}
}
fn file_dir(&self) -> PathBuf {
return if self.file.is_file() {
// Only use the dirname portion if the root is a file.
self.file.parent().unwrap().to_path_buf()
} else {
// otherwise use clone of the root..
self.file.clone()
};
}
fn eval_module_def(&mut self, def: &ModuleDef) -> Result<Rc<Val>, Box<Error>> {
let root = self.file_dir();
// Always work on a copy. The original should not be modified.
let mut def = def.clone();
// First we rewrite the imports to be absolute paths.
def.imports_to_absolute(root);
// Then we create our tuple default.
def.arg_tuple = Some(self.tuple_to_val(&def.arg_set)?);
// Then we construct a new Val::Module
Ok(Rc::new(Val::Module(def)))
}
fn eval_select(&mut self, def: &SelectDef) -> Result<Rc<Val>, Box<Error>> {
let target = &def.val;
let def_expr = &def.default;
let fields = &def.tuple;
// First resolve the target expression.
let v = self.eval_expr(target)?;
// Second ensure that the expression resolves to a string.
if let &Val::Str(ref name) = v.deref() {
// Third find the field with that name in the tuple.
for &(ref fname, ref val_expr) in fields.iter() {
if &fname.fragment == name {
// Fourth return the result of evaluating that field.
return self.eval_expr(val_expr);
}
}
// Otherwise return the default.
return self.eval_expr(def_expr);
} else if let &Val::Boolean(b) = v.deref() {
for &(ref fname, ref val_expr) in fields.iter() {
if &fname.fragment == "true" && b {
// Fourth return the result of evaluating that field.
return self.eval_expr(val_expr);
} else if &fname.fragment == "false" && !b {
return self.eval_expr(val_expr);
}
}
// Otherwise return the default.
return self.eval_expr(def_expr);
} else {
return Err(Box::new(error::BuildError::new(
format!(
"Expected String but got \
{} in Select expression",
v.type_name()
),
error::ErrorType::TypeFail,
def.pos.clone(),
)));
}
}
fn eval_list_op(&mut self, def: &ListOpDef) -> Result<Rc<Val>, Box<Error>> {
let maybe_list = self.eval_expr(&def.target)?;
let l = match maybe_list.as_ref() {
&Val::List(ref elems) => elems,
other => {
return Err(Box::new(error::BuildError::new(
format!("Expected List as target but got {:?}", other.type_name()),
error::ErrorType::TypeFail,
def.target.pos().clone(),
)));
}
};
let mac = &def.mac;
if let &Val::Macro(ref macdef) = self.lookup_selector(&mac.sel)?.as_ref() {
let mut out = Vec::new();
for item in l.iter() {
let argvals = vec![item.clone()];
let fields = macdef.eval(self.file.clone(), self, argvals)?;
if let Some(v) = Self::find_in_fieldlist(&def.field, &fields) {
match def.typ {
ListOpType::Map => {
out.push(v.clone());
}
ListOpType::Filter => {
if let &Val::Empty = v.as_ref() {
// noop
continue;
} else if let &Val::Boolean(false) = v.as_ref() {
// noop
continue;
}
out.push(item.clone());
}
}
}
}
return Ok(Rc::new(Val::List(out)));
}
return Err(Box::new(error::BuildError::new(
format!("Expected macro but got {:?}", mac),
error::ErrorType::TypeFail,
def.pos.clone(),
)));
}
fn build_assert(&mut self, tok: &Token) -> Result<Rc<Val>, Box<Error>> {
if !self.validate_mode {
// we are not in validate_mode then build_asserts are noops.
return Ok(Rc::new(Val::Empty));
}
let expr = &tok.fragment;
let assert_input =
OffsetStrIter::new_with_offsets(expr, tok.pos.line - 1, tok.pos.column - 1);
let ok = match self.eval_input(assert_input) {
Ok(v) => v,
Err(e) => {
// failure!
let msg = format!(
"NOT OK - '{}' at line: {} column: {}\n\tCompileError: {}\n",
expr, tok.pos.line, tok.pos.column, e
);
self.assert_collector.summary.push_str(&msg);
self.assert_collector.failures.push_str(&msg);
self.assert_collector.success = false;
return Ok(Rc::new(Val::Empty));
}
};
if let &Val::Boolean(b) = ok.as_ref() {
// record the assertion result.
if b {
// success!
let msg = format!(
"OK - '{}' at line: {} column: {}\n",
expr, tok.pos.line, tok.pos.column
);
self.assert_collector.summary.push_str(&msg);
} else {
// failure!
let msg = format!(
"NOT OK - '{}' at line: {} column: {}\n",
expr, tok.pos.line, tok.pos.column
);
self.assert_collector.summary.push_str(&msg);
self.assert_collector.failures.push_str(&msg);
self.assert_collector.success = false;
}
} else {
// record an assertion type-failure result.
let msg = format!(
"TYPE FAIL - '{}' Expected Boolean got {} at line: {} column: {}\n",
expr, ok, tok.pos.line, tok.pos.column
);
self.assert_collector.failures.push_str(&msg);
self.assert_collector.success = false;
self.assert_collector.summary.push_str(&msg);
}
Ok(ok)
}
// Evals a single Expression in the context of a running Builder.
// It does not mutate the builders collected state at all.
pub fn eval_expr(&mut self, expr: &Expression) -> Result<Rc<Val>, Box<Error>> {
match expr {
&Expression::Simple(ref val) => self.value_to_val(val),
&Expression::Binary(ref def) => self.eval_binary(def),
&Expression::Compare(ref def) => self.eval_compare(def),
&Expression::Copy(ref def) => self.eval_copy(def),
&Expression::Grouped(ref expr) => self.eval_expr(expr),
&Expression::Format(ref def) => self.eval_format(def),
&Expression::Call(ref def) => self.eval_call(def),
&Expression::Macro(ref def) => self.eval_macro_def(def),
&Expression::Module(ref def) => self.eval_module_def(def),
&Expression::Select(ref def) => self.eval_select(def),
&Expression::ListOp(ref def) => self.eval_list_op(def),
}
}
}
#[cfg(test)]
mod compile_test;
#[cfg(test)]
mod test;