// Copyright 2017 Jeremy Wall // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use std::fs::File; use std::io::Read; use std::error::Error; use std::collections::{HashSet, HashMap, VecDeque}; use std::collections::hash_map::Entry; use std::fmt; use std::fmt::{Display, Formatter}; use std::ops::Deref; use std::rc::Rc; use std::convert::From; use tokenizer::Span; use ast::*; use format; use parse::parse; use error; impl MacroDef { pub fn eval(&self, mut args: Vec>) -> Result, Rc)>, Box> { // Error conditions. If the args don't match the length and types of the argdefs then this is // macro call error. if args.len() > self.argdefs.len() { return Err(Box::new(error::Error::new("Macro called with too many args", error::ErrorType::BadArgLen, self.pos.clone()))); } // If the args don't match the types required by the expressions then that is a TypeFail. // If the expressions reference Symbols not defined in the MacroDef that is also an error. // TODO(jwall): We should probably enforce that the Expression Symbols must be in argdefs rules // at Macro definition time not evaluation time. let mut scope = HashMap::, Rc>::new(); for (i, arg) in args.drain(0..).enumerate() { scope.entry(self.argdefs[i].clone()).or_insert(arg.clone()); } let b = Builder::new_with_scope(scope); let mut result: Vec<(Positioned, Rc)> = Vec::new(); for &(ref key, ref expr) in self.fields.iter() { // We clone the expressions here because this macro may be consumed // multiple times in the future. let val = try!(b.eval_expr(expr)); result.push((key.into(), val.clone())); } Ok(result) } } /// BuildResult is the result of a build. type BuildResult = Result<(), Box>; /// Val is the Intermediate representation of a compiled UCG AST. #[derive(PartialEq,Debug,Clone)] pub enum Val { Int(i64), Float(f64), String(String), List(Vec>), Tuple(Vec<(Positioned, Rc)>), Macro(MacroDef), } impl Val { pub fn type_name(&self) -> String { match self { &Val::Int(_) => "Integer".to_string(), &Val::Float(_) => "Float".to_string(), &Val::String(_) => "String".to_string(), &Val::List(_) => "List".to_string(), &Val::Tuple(_) => "Tuple".to_string(), &Val::Macro(_) => "Macro".to_string(), } } pub fn type_equal(&self, target: &Self) -> bool { enum_type_equality!(self, target, &Val::Int(_), &Val::Float(_), &Val::String(_), &Val::List(_), &Val::Tuple(_), &Val::Macro(_)) } pub fn get_fields(&self) -> Option<&Vec<(Positioned, Rc)>> { if let &Val::Tuple(ref fs) = self { Some(fs) } else { None } } pub fn is_int(&self) -> bool { if let &Val::Int(_) = self { return true; } return false; } pub fn is_float(&self) -> bool { if let &Val::Float(_) = self { return true; } return false; } pub fn is_string(&self) -> bool { if let &Val::String(_) = self { return true; } return false; } pub fn is_tuple(&self) -> bool { if let &Val::Tuple(_) = self { return true; } return false; } pub fn is_list(&self) -> bool { if let &Val::Tuple(_) = self { return true; } return false; } } impl Display for Val { fn fmt(&self, f: &mut Formatter) -> fmt::Result { match self { &Val::Float(ref ff) => write!(f, "Float({})", ff), &Val::Int(ref i) => write!(f, "Int({})", i), &Val::String(ref s) => write!(f, "String({})", s), &Val::List(ref def) => { try!(write!(f, "[\n")); for v in def.iter() { try!(write!(f, "\t{},\n", v)); } write!(f, "]") } &Val::Macro(_) => write!(f, "Macro(..)"), &Val::Tuple(ref def) => { try!(write!(f, "Tuple(\n")); for v in def.iter() { try!(write!(f, "\t{} = {},\n", v.0.val, v.1)); } write!(f, ")") } } } } impl From for String { fn from(v: Val) -> String { match v { Val::Int(ref i) => format!("{}", i), Val::Float(ref f) => format!("{}", f), Val::String(ref s) => s.to_string(), val => format!("<{}>", val), } } } /// ValueMap defines a set of values in a parsed file. type ValueMap = HashMap, Rc>; /// Builder parses one or more statements into a out Tuple. pub struct Builder { /// assets are other parsed files from import statements. They /// are keyed by the normalized import path. This acts as a cache /// so multiple imports of the same file don't have to be parsed /// multiple times. assets: ValueMap, // List of file paths we have already parsed. files: HashSet, /// out is our built output. out: ValueMap, /// last is the result of the last statement. pub last: Option>, } macro_rules! eval_binary_expr { ($case:pat, $pos:ident, $rside:ident, $result:expr, $msg:expr) => { match $rside.as_ref() { $case => { return Ok(Rc::new($result)); }, val => { return Err(Box::new( error::Error::new( format!("Expected {} but got {}", $msg, val), error::ErrorType::TypeFail, $pos.clone()))); } } } } impl Builder { // TODO(jwall): Maintain order for tuples. fn tuple_to_val(&self, fields: &Vec<(Token, Expression)>) -> Result, Box> { let mut new_fields = Vec::<(Positioned, Rc)>::new(); for &(ref name, ref expr) in fields.iter() { let val = try!(self.eval_expr(expr)); new_fields.push((name.into(), val)); } Ok(Rc::new(Val::Tuple(new_fields))) } fn list_to_val(&self, def: &ListDef) -> Result, Box> { let mut vals = Vec::new(); for expr in def.elems.iter() { vals.push(try!(self.eval_expr(expr))); } Ok(Rc::new(Val::List(vals))) } fn value_to_val(&self, v: &Value) -> Result, Box> { match v { &Value::Int(ref i) => Ok(Rc::new(Val::Int(i.val))), &Value::Float(ref f) => Ok(Rc::new(Val::Float(f.val))), &Value::String(ref s) => Ok(Rc::new(Val::String(s.val.to_string()))), &Value::Symbol(ref s) => { self.lookup_sym(&(s.into())) .ok_or(Box::new(error::Error::new(format!("Unable to find {}", s.val), error::ErrorType::NoSuchSymbol, v.pos().clone()))) } &Value::List(ref def) => self.list_to_val(def), &Value::Tuple(ref tuple) => self.tuple_to_val(&tuple.val), &Value::Selector(ref selector_list_node) => { self.lookup_selector(&selector_list_node.sel) } } } pub fn new() -> Self { Builder { assets: HashMap::new(), files: HashSet::new(), out: HashMap::new(), last: None, } } pub fn new_with_scope(scope: ValueMap) -> Self { Builder { assets: HashMap::new(), files: HashSet::new(), out: scope, last: None, } } pub fn get_out_by_name(&self, name: &str) -> Option> { let key = Positioned { pos: Position::new(0, 0), val: name.to_string(), }; self.lookup_sym(&key) } pub fn build(&mut self, ast: &Vec) -> BuildResult { for stmt in ast.iter() { try!(self.build_stmt(stmt)); } Ok(()) } pub fn build_file_string(&mut self, _name: &str, input: String) -> BuildResult { match parse(Span::new(&input)) { Ok(stmts) => { for stmt in stmts.iter() { try!(self.build_stmt(stmt)); } Ok(()) } Err(err) => Err(Box::new(err)), } } pub fn build_file(&mut self, name: &str) -> BuildResult { let mut f = try!(File::open(name)); let mut s = String::new(); // TODO(jwall): It would be nice to be able to do this while streaming try!(f.read_to_string(&mut s)); self.build_file_string(name, s) } fn build_import(&mut self, def: &ImportDef) -> BuildResult { if !self.files.contains(&def.path.fragment) { // Only parse the file once on import. let sym = &def.name; let positioned_sym = sym.into(); if self.assets.get(&positioned_sym).is_none() { let mut b = Self::new(); try!(b.build_file(&def.path.fragment)); let fields: Vec<(Positioned, Rc)> = b.out.drain().collect(); let result = Rc::new(Val::Tuple(fields)); self.assets.entry(positioned_sym).or_insert(result.clone()); self.files.insert(def.path.fragment.clone()); self.last = Some(result); } } Ok(()) } fn build_let(&mut self, def: &LetDef) -> BuildResult { let val = try!(self.eval_expr(&def.value)); self.last = Some(val.clone()); let name = &def.name; match self.out.entry(name.into()) { Entry::Occupied(e) => { return Err(Box::new(error::Error::new(format!("Let binding \ for {:?} already \ exists", e.key()), error::ErrorType::DuplicateBinding, def.name.pos.clone()))); } Entry::Vacant(e) => { e.insert(val); } } Ok(()) } fn build_stmt(&mut self, stmt: &Statement) -> BuildResult { match stmt { &Statement::Let(ref def) => { try!(self.build_let(def)); } &Statement::Import(ref def) => { try!(self.build_import(def)); } &Statement::Expression(ref expr) => { self.last = Some(try!(self.eval_expr(expr))); } }; Ok(()) } fn lookup_sym(&self, sym: &Positioned) -> Option> { if self.out.contains_key(sym) { return Some(self.out[sym].clone()); } if self.assets.contains_key(sym) { return Some(self.assets[sym].clone()); } None } fn find_in_fieldlist(target: &str, fs: &Vec<(Positioned, Rc)>) -> Option> { for (key, val) in fs.iter().cloned() { if target == &key.val { return Some(val.clone()); } } return None; } fn lookup_in_tuple(&self, stack: &mut VecDeque>, sl: &SelectorList, next: (&Position, &str), fs: &Vec<(Positioned, Rc)>) -> Result<(), Box> { // This unwrap is safe because we already checked for // Tuple in the pattern match. if let Some(vv) = Self::find_in_fieldlist(next.1, fs) { stack.push_back(vv.clone()); } else { // TODO(jwall): A better error for this would be nice. return Err(Box::new(error::Error::new(format!("Unable to \ match selector \ path {:?}", sl), error::ErrorType::NoSuchSymbol, next.0.clone()))); } Ok(()) } fn lookup_in_list(&self, stack: &mut VecDeque>, sl: &SelectorList, next: (&Position, &str), elems: &Vec>) -> Result<(), Box> { // TODO(jwall): better error reporting here would probably be good. let idx = try!(next.1.parse::()); if idx < elems.len() { stack.push_back(elems[idx].clone()); } else { // TODO(jwall): A better error for this would be nice. return Err(Box::new(error::Error::new(format!("Unable to \ match selector \ path {:?}", sl), error::ErrorType::NoSuchSymbol, next.0.clone()))); } Ok(()) } fn lookup_selector(&self, sl: &SelectorList) -> Result, Box> { let first = try!(self.eval_expr(&sl.head)); // First we ensure that the result is a tuple or a list. let mut stack = VecDeque::new(); match first.as_ref() { &Val::Tuple(_) => { stack.push_back(first.clone()); } &Val::List(_) => { stack.push_back(first.clone()); } _ => { // noop } } if let &Some(ref tail) = &sl.tail { let mut it = tail.iter().peekable(); loop { let vref = stack.pop_front().unwrap(); if it.peek().is_none() { return Ok(vref.clone()); } // This unwrap is safe because we already checked for // None above. let next = it.next().unwrap(); match vref.as_ref() { &Val::Tuple(ref fs) => { try!(self.lookup_in_tuple( &mut stack, sl, (&next.pos, &next.fragment), fs)); continue; } &Val::List(ref elems) => { try!(self.lookup_in_list(&mut stack, sl, ( &next.pos, &next.fragment), elems)); continue; } _ => { return Err(Box::new(error::Error::new(format!("{} is not a Tuple or List", vref), error::ErrorType::TypeFail, next.pos.clone()))); } } } } else { return Ok(first); } } fn add_vals(&self, pos: &Position, left: Rc, right: Rc) -> Result, Box> { match *left { Val::Int(i) => { eval_binary_expr!(&Val::Int(ii), pos, right, Val::Int(i + ii), "Integer") } Val::Float(f) => { eval_binary_expr!(&Val::Float(ff), pos, right, Val::Float(f + ff), "Float") } Val::String(ref s) => { match right.as_ref() { &Val::String(ref ss) => { return Ok(Rc::new(Val::String([s.to_string(), ss.clone()].concat()))) } val => { return Err(Box::new(error::Error::new(format!("Expected \ String \ but got \ {:?}", val), error::ErrorType::TypeFail, pos.clone()))) } } } Val::List(ref l) => { match right.as_ref() { &Val::List(ref r) => { let mut new_vec = Vec::new(); new_vec.extend(l.iter().cloned()); new_vec.extend(r.iter().cloned()); return Ok(Rc::new(Val::List(new_vec))); } val => { return Err(Box::new(error::Error::new(format!("Expected \ List \ but got \ {:?}", val), error::ErrorType::TypeFail, pos.clone()))) } } } ref expr => { return Err(Box::new( error::Error::new( format!("{} does not support the '+' operation", expr.type_name()), error::ErrorType::Unsupported, pos.clone()))) } } } fn subtract_vals(&self, pos: &Position, left: Rc, right: Rc) -> Result, Box> { match *left { Val::Int(i) => { eval_binary_expr!(&Val::Int(ii), pos, right, Val::Int(i - ii), "Integer") } Val::Float(f) => { eval_binary_expr!(&Val::Float(ff), pos, right, Val::Float(f - ff), "Float") } ref expr => { return Err(Box::new( error::Error::new( format!("{} does not support the '-' operation", expr.type_name()), error::ErrorType::Unsupported, pos.clone()))) } } } fn multiply_vals(&self, pos: &Position, left: Rc, right: Rc) -> Result, Box> { match *left { Val::Int(i) => { eval_binary_expr!(&Val::Int(ii), pos, right, Val::Int(i * ii), "Integer") } Val::Float(f) => { eval_binary_expr!(&Val::Float(ff), pos, right, Val::Float(f * ff), "Float") } ref expr => { return Err(Box::new( error::Error::new( format!("{} does not support the '*' operation", expr.type_name()), error::ErrorType::Unsupported, pos.clone()))) } } } fn divide_vals(&self, pos: &Position, left: Rc, right: Rc) -> Result, Box> { match *left { Val::Int(i) => { eval_binary_expr!(&Val::Int(ii), pos, right, Val::Int(i / ii), "Integer") } Val::Float(f) => { eval_binary_expr!(&Val::Float(ff), pos, right, Val::Float(f / ff), "Float") } ref expr => { return Err(Box::new( error::Error::new( format!("{} does not support the '*' operation", expr.type_name()), error::ErrorType::Unsupported, pos.clone()))) } } } fn eval_binary(&self, def: &BinaryOpDef) -> Result, Box> { let kind = &def.kind; let v = &def.left; let expr = &def.right; let right = try!(self.eval_expr(expr)); let left = try!(self.value_to_val(v)); match kind { &BinaryExprType::Add => self.add_vals(&def.pos, left, right), &BinaryExprType::Sub => self.subtract_vals(&def.pos, left, right), &BinaryExprType::Mul => self.multiply_vals(&def.pos, left, right), &BinaryExprType::Div => self.divide_vals(&def.pos, left, right), } } fn eval_copy(&self, def: &CopyDef) -> Result, Box> { let v = try!(self.lookup_selector(&def.selector.sel)); if let Val::Tuple(ref src_fields) = *v { let mut m = HashMap::, (i32, Rc)>::new(); // loop through fields and build up a hashmap // TODO(jwall): Maintain field order here. let mut count = 0; for &(ref key, ref val) in src_fields.iter() { if let Entry::Vacant(v) = m.entry(key.clone()) { v.insert((count, val.clone())); count += 1; } else { return Err(Box::new(error::Error::new(format!("Duplicate \ field: {} in \ tuple", key.val), error::ErrorType::TypeFail, key.pos.clone()))); } } for &(ref key, ref val) in def.fields.iter() { let expr_result = try!(self.eval_expr(val)); // TODO(jwall): Maintain field order here. match m.entry(key.into()) { // brand new field here. Entry::Vacant(v) => { v.insert((count, expr_result)); count += 1; } Entry::Occupied(mut v) => { // overriding field here. // Ensure that the new type matches the old type. let src_val = v.get().clone(); if src_val.1.type_equal(&expr_result) { v.insert((src_val.0, expr_result)); } else { return Err(Box::new( error::Error::new( format!("Expected type {} for field {} but got {}", src_val.1.type_name(), key.fragment, expr_result.type_name()), error::ErrorType::TypeFail, key.pos.clone()))); } } }; } let mut new_fields: Vec<(Positioned, (i32, Rc))> = m.drain().collect(); // We want to maintain our order for the fields to make comparing tuples // easier in later code. So we sort by the field order before constructing a new tuple. new_fields.sort_by(|a, b| { let ta = a.1.clone(); let tb = b.1.clone(); ta.0.cmp(&tb.0) }); return Ok(Rc::new(Val::Tuple(new_fields.iter() .map(|a| { let first = a.0.clone(); let t = a.1.clone(); (first, t.1) }) .collect()))); } Err(Box::new(error::Error::new(format!("Expected Tuple got {}", v), error::ErrorType::TypeFail, def.selector.pos.clone()))) } fn eval_format(&self, def: &FormatDef) -> Result, Box> { let tmpl = &def.template; let args = &def.args; let mut vals = Vec::new(); for v in args.iter() { let rcv = try!(self.eval_expr(v)); vals.push(rcv.deref().clone()); } let formatter = format::Formatter::new(tmpl.clone(), vals); Ok(Rc::new(Val::String(try!(formatter.render(&def.pos))))) } fn eval_call(&self, def: &CallDef) -> Result, Box> { let sel = &def.macroref; let args = &def.arglist; let v = try!(self.lookup_selector(&sel.sel)); if let &Val::Macro(ref m) = v.deref() { // Congratulations this is actually a macro. let mut argvals: Vec> = Vec::new(); for arg in args.iter() { argvals.push(try!(self.eval_expr(arg))); } let fields = try!(m.eval(argvals)); return Ok(Rc::new(Val::Tuple(fields))); } Err(Box::new(error::Error::new(// We should pretty print the selectors here. format!("{} is not a Macro", v), error::ErrorType::TypeFail, def.pos.clone()))) } fn eval_macro_def(&self, def: &MacroDef) -> Result, Box> { match def.validate_symbols() { Ok(()) => Ok(Rc::new(Val::Macro(def.clone()))), Err(set) => { Err(Box::new(error::Error::new(format!("Macro has the following \ undefined symbols: {:?}", set), error::ErrorType::NoSuchSymbol, def.pos.clone()))) } } } fn eval_select(&self, def: &SelectDef) -> Result, Box> { let target = &def.val; let def_expr = &def.default; let fields = &def.tuple; // First resolve the target expression. let v = try!(self.eval_expr(target)); // Second ensure that the expression resolves to a string. if let &Val::String(ref name) = v.deref() { // Third find the field with that name in the tuple. for &(ref fname, ref val_expr) in fields.iter() { if &fname.fragment == name { // Fourth return the result of evaluating that field. return self.eval_expr(val_expr); } } // Otherwise return the default return self.eval_expr(def_expr); } else { return Err(Box::new(error::Error::new(format!("Expected String but got \ {} in Select expression", v.type_name()), error::ErrorType::TypeFail, def.pos.clone()))); } } // eval_expr evals a single Expression in the context of a running Builder. // It does not mutate the builders collected state at all. pub fn eval_expr(&self, expr: &Expression) -> Result, Box> { // TODO(jwall): We probably don't want to consume these expressions. // Take a reference instead? match expr { &Expression::Simple(ref val) => self.value_to_val(val), &Expression::Binary(ref def) => self.eval_binary(def), &Expression::Copy(ref def) => self.eval_copy(def), &Expression::Grouped(ref expr) => self.eval_expr(expr), &Expression::Format(ref def) => self.eval_format(def), &Expression::Call(ref def) => self.eval_call(def), &Expression::Macro(ref def) => self.eval_macro_def(def), &Expression::Select(ref def) => self.eval_select(def), } } } #[cfg(test)] mod test { use super::{Builder, Val, MacroDef, SelectDef, CallDef}; use ast::*; use std::rc::Rc; fn test_expr_to_val(mut cases: Vec<(Expression, Val)>, b: Builder) { for tpl in cases.drain(0..) { assert_eq!(b.eval_expr(&tpl.0).unwrap(), Rc::new(tpl.1)); } } #[test] fn test_eval_div_expr() { let b = Builder::new(); test_expr_to_val(vec![ (Expression::Binary( BinaryOpDef{ kind: BinaryExprType::Div, left: Value::Int(value_node!(2, 1, 1)), right: Box::new(Expression::Simple(Value::Int(value_node!(2, 1, 1)))), pos: Position::new(1, 0), }), Val::Int(1)), (Expression::Binary( BinaryOpDef{ kind: BinaryExprType::Div, left: Value::Float(value_node!(2.0, 1, 1)), right: Box::new(Expression::Simple(Value::Float(value_node!(2.0, 1, 1)))), pos: Position::new(1, 0), }), Val::Float(1.0)), ], b); } #[test] #[should_panic(expected = "Expected Float")] fn test_eval_div_expr_fail() { let b = Builder::new(); test_expr_to_val(vec![ (Expression::Binary( BinaryOpDef{ kind: BinaryExprType::Div, left: Value::Float(value_node!(2.0, 1, 1)), right: Box::new(Expression::Simple(Value::Int(value_node!(2, 1, 1)))), pos: Position::new(1, 0), }), Val::Float(1.0)), ], b); } #[test] fn test_eval_mul_expr() { let b = Builder::new(); test_expr_to_val(vec![ (Expression::Binary( BinaryOpDef{ kind: BinaryExprType::Mul, left: Value::Int(value_node!(2, 1, 1)), right: Box::new(Expression::Simple(Value::Int(value_node!(2, 1, 1)))), pos: Position::new(1, 0), }), Val::Int(4)), (Expression::Binary( BinaryOpDef{ kind: BinaryExprType::Mul, left: Value::Float(value_node!(2.0, 1, 1)), right: Box::new(Expression::Simple(Value::Float(value_node!(2.0, 1, 1)))), pos: Position::new(1, 0), }), Val::Float(4.0)), ], b); } #[test] #[should_panic(expected = "Expected Float")] fn test_eval_mul_expr_fail() { let b = Builder::new(); test_expr_to_val(vec![ (Expression::Binary( BinaryOpDef{ kind: BinaryExprType::Mul, left: Value::Float(value_node!(2.0, 1, 1)), right: Box::new(Expression::Simple(Value::Int(value_node!(20, 1, 1)))), pos: Position::new(1, 0), }), Val::Float(1.0)), ], b); } #[test] fn test_eval_subtract_expr() { let b = Builder::new(); test_expr_to_val(vec![ (Expression::Binary( BinaryOpDef{ kind: BinaryExprType::Sub, left: Value::Int(value_node!(2, 1, 1)), right: Box::new(Expression::Simple(Value::Int(value_node!(1, 1, 1)))), pos: Position::new(1, 0), }), Val::Int(1)), (Expression::Binary( BinaryOpDef{ kind: BinaryExprType::Sub, left: Value::Float(value_node!(2.0, 1, 1)), right: Box::new(Expression::Simple(Value::Float(value_node!(1.0, 1, 1)))), pos: Position::new(1, 0), }), Val::Float(1.0)), ], b); } #[test] #[should_panic(expected = "Expected Float")] fn test_eval_subtract_expr_fail() { let b = Builder::new(); test_expr_to_val(vec![ (Expression::Binary( BinaryOpDef{ kind: BinaryExprType::Sub, left: Value::Float(value_node!(2.0, 1, 1)), right: Box::new(Expression::Simple(Value::Int(value_node!(2, 1, 1)))), pos: Position::new(1, 0), }), Val::Float(1.0)), ], b); } #[test] fn test_eval_add_expr() { let b = Builder::new(); test_expr_to_val(vec![ (Expression::Binary( BinaryOpDef{ kind: BinaryExprType::Add, left: Value::Int(value_node!(1, 1, 1)), right: Box::new(Expression::Simple(Value::Int(value_node!(1, 1, 1)))), pos: Position::new(1, 0), }), Val::Int(2)), (Expression::Binary( BinaryOpDef{ kind: BinaryExprType::Add, left: Value::Float(value_node!(1.0, 1, 1)), right: Box::new(Expression::Simple(Value::Float(value_node!(1.0, 1, 1)))), pos: Position::new(1, 0), }), Val::Float(2.0)), (Expression::Binary( BinaryOpDef{ kind: BinaryExprType::Add, left: Value::String(value_node!("foo".to_string(), 1, 1)), right: Box::new(Expression::Simple(Value::String(value_node!("bar".to_string(), 1, 1)))), pos: Position::new(1, 0), }), Val::String("foobar".to_string())), (Expression::Binary( BinaryOpDef{ kind: BinaryExprType::Add, left: Value::List( ListDef{ elems: vec![Expression::Simple(Value::String(value_node!("foo".to_string(), 1, 1)))], pos: Position::new(1, 1), }), right: Box::new(Expression::Simple(Value::List( ListDef{ elems: vec![Expression::Simple(Value::String(value_node!("bar".to_string(), 1, 1)))], pos: Position::new(1, 1), }))), pos: Position::new(1, 0), }), Val::List(vec![Rc::new(Val::String("foo".to_string())), Rc::new(Val::String("bar".to_string()))])), ], b); } #[test] #[should_panic(expected = "Expected Float")] fn test_eval_add_expr_fail() { let b = Builder::new(); test_expr_to_val(vec![ (Expression::Binary( BinaryOpDef{ kind: BinaryExprType::Add, left: Value::Float(value_node!(2.0, 1, 1)), right: Box::new(Expression::Simple(Value::Int(value_node!(2, 1, 1)))), pos: Position::new(1, 0), }), Val::Float(1.0)), ], b); } #[test] fn test_eval_simple_expr() { test_expr_to_val(vec![ (Expression::Simple(Value::Int(value_node!(1, 1, 1))), Val::Int(1)), (Expression::Simple(Value::Float(value_node!(2.0, 1, 1))), Val::Float(2.0)), (Expression::Simple(Value::String(value_node!("foo".to_string(), 1, 1))), Val::String("foo".to_string())), (Expression::Simple(Value::Tuple(value_node!(vec![ (make_tok!("bar", 1, 1), Expression::Simple(Value::Int(value_node!(1, 1, 1)))) ], 1, 1))), Val::Tuple(vec![(value_node!("bar".to_string(), 1, 1), Rc::new(Val::Int(1)))])), ], Builder::new()); } #[test] fn test_eval_simple_lookup_expr() { let mut b = Builder::new(); b.out .entry(value_node!("var1".to_string(), 1, 0)) .or_insert(Rc::new(Val::Int(1))); test_expr_to_val(vec![ (Expression::Simple(Value::Symbol(value_node!("var1".to_string(), 1, 1))), Val::Int(1)), ], b); } #[test] fn test_eval_simple_lookup_error() { let mut b = Builder::new(); b.out .entry(value_node!("var1".to_string(), 1, 0)) .or_insert(Rc::new(Val::Int(1))); let expr = Expression::Simple(Value::Symbol(value_node!("var".to_string(), 1, 1))); assert!(b.eval_expr(&expr).is_err()); } #[test] fn test_eval_selector_expr() { let mut b = Builder::new(); b.out.entry(value_node!("var1".to_string(), 1, 0)).or_insert(Rc::new(Val::Tuple(vec![ (value_node!("lvl1".to_string(), 1, 0), Rc::new(Val::Tuple( vec![ (value_node!("lvl2".to_string(), 1, 0), Rc::new(Val::Int(3))), ] ))), ]))); b.out .entry(value_node!("var2".to_string(), 1, 0)) .or_insert(Rc::new(Val::Int(2))); b.out .entry(value_node!("var3".to_string(), 1, 0)) .or_insert(Rc::new(Val::Tuple(vec![(value_node!("lvl1".to_string(), 1, 0), Rc::new(Val::Int(4)))]))); test_expr_to_val(vec![ (Expression::Simple(Value::Selector(make_selector!(make_expr!("var1")))), Val::Tuple( vec![ (value_node!("lvl1".to_string(), 1, 0), Rc::new(Val::Tuple( vec![ (value_node!("lvl2".to_string(), 1, 0), Rc::new(Val::Int(3))), ] ))), ] )), (Expression::Simple(Value::Selector(make_selector!(make_expr!("var1") => "lvl1"))), Val::Tuple( vec![ (value_node!("lvl2".to_string(), 1, 0), Rc::new(Val::Int(3))), ] )), (Expression::Simple(Value::Selector(make_selector!(make_expr!("var1") => "lvl1", "lvl2"))), Val::Int(3)), (Expression::Simple(Value::Selector(make_selector!(make_expr!("var2")))), Val::Int(2)), (Expression::Simple(Value::Selector(make_selector!(make_expr!("var3") => "lvl1"))), Val::Int(4)), ], b); } #[test] fn test_eval_selector_list_expr() { let mut b = Builder::new(); b.out .entry(value_node!("var1".to_string(), 1, 1)) .or_insert(Rc::new(Val::List(vec![ Rc::new(Val::String("val1".to_string())), Rc::new(Val::Tuple(vec![ (value_node!("var2".to_string(), 1, 1), Rc::new(Val::Int(1))), ])), ]))); // TODO(jwall): Assert that we can index into lists using dot syntax. test_expr_to_val(vec![ (Expression::Simple(Value::Selector(make_selector!(make_expr!("var1") => "0" => 1, 1))), Val::String("val1".to_string())) ], b); } #[test] #[should_panic(expected = "Unable to find tpl1")] fn test_expr_copy_no_such_tuple() { let b = Builder::new(); test_expr_to_val(vec![ (Expression::Copy(CopyDef{ selector: make_selector!(make_expr!("tpl1")), fields: Vec::new(), pos: Position::new(1, 0)}), Val::Tuple(Vec::new())), ], b); } #[test] #[should_panic(expected = "Expected Tuple got Int(1)")] fn test_expr_copy_not_a_tuple() { let mut b = Builder::new(); b.out .entry(value_node!("tpl1".to_string(), 1, 0)) .or_insert(Rc::new(Val::Int(1))); test_expr_to_val(vec![ (Expression::Copy(CopyDef{ selector: make_selector!(make_expr!("tpl1")), fields: Vec::new(), pos: Position::new(1, 0)}), Val::Tuple(Vec::new())), ], b); } #[test] #[should_panic(expected = "Expected type Integer for field fld1 but got String")] fn test_expr_copy_field_type_error() { let mut b = Builder::new(); b.out.entry(value_node!("tpl1".to_string(), 1, 0)).or_insert(Rc::new(Val::Tuple(vec![ (value_node!("fld1".to_string(), 1, 0), Rc::new(Val::Int(1))), ]))); test_expr_to_val(vec![ (Expression::Copy( CopyDef{ selector: make_selector!(make_expr!("tpl1")), fields: vec![(make_tok!("fld1", 1, 1), Expression::Simple(Value::String(value_node!("2".to_string(), 1, 1))))], pos: Position::new(1, 0)}), Val::Tuple( vec![ (value_node!("fld1".to_string(), 1, 1), Rc::new(Val::String("2".to_string()))), ], )), ], b); } #[test] fn test_expr_copy() { let mut b = Builder::new(); b.out.entry(value_node!("tpl1".to_string(), 1, 0)).or_insert(Rc::new(Val::Tuple(vec![ (value_node!("fld1".to_string(), 1, 0), Rc::new(Val::Int(1))), ]))); test_expr_to_val(vec![ (Expression::Copy( CopyDef{ selector: make_selector!(make_expr!("tpl1")), fields: vec![(make_tok!("fld2", 1, 1), Expression::Simple(Value::String(value_node!("2".to_string(), 1, 1))))], pos: Position::new(1, 0), }), // Add a new field to the copy Val::Tuple( // NOTE(jwall): The order of these is important in order to ensure // that the compare assertion is correct. The ordering has no // semantics though so at some point we should probably be less restrictive. vec![ (value_node!("fld1".to_string(), 1, 0), Rc::new(Val::Int(1))), (value_node!("fld2".to_string(), 1, 1), Rc::new(Val::String("2".to_string()))), ], )), // Overwrite a field in the copy (Expression::Copy( CopyDef{ selector: make_selector!(make_expr!("tpl1")), fields: vec![ (make_tok!("fld1", 1, 1), Expression::Simple(Value::Int(value_node!(3, 1, 1)))), (make_tok!("fld2", 1, 1), Expression::Simple(Value::String(value_node!("2".to_string(), 1, 1)))), ], pos: Position::new(1, 0), }), Val::Tuple( vec![ (value_node!("fld1".to_string(), 1, 0), Rc::new(Val::Int(3))), (value_node!("fld2".to_string(), 1, 0), Rc::new(Val::String("2".to_string()))), ], )), // The source tuple is still unmodified. (Expression::Simple(Value::Selector(make_selector!(make_expr!["tpl1"]))), Val::Tuple( vec![ (value_node!("fld1".to_string(), 1, 0), Rc::new(Val::Int(1))), ], )), ], b); } #[test] fn test_macro_call() { let mut b = Builder::new(); b.out.entry(value_node!("tstmac".to_string(), 1, 0)).or_insert(Rc::new(Val::Macro(MacroDef{ argdefs: vec![value_node!("arg1".to_string(), 1, 0)], fields: vec![ (make_tok!("foo", 1, 1), Expression::Simple(Value::Symbol(value_node!("arg1".to_string(), 1, 1)))), ], pos: Position::new(1, 0), }))); test_expr_to_val(vec![ (Expression::Call(CallDef{ macroref: make_selector!(make_expr!("tstmac")), arglist: vec![Expression::Simple(Value::String(value_node!("bar".to_string(), 1, 1)))], pos: Position::new(1, 0), }), Val::Tuple(vec![ (value_node!("foo".to_string(), 1, 1), Rc::new(Val::String("bar".to_string()))), ])), ], b); } #[test] #[should_panic(expected = "Unable to find arg1")] fn test_macro_hermetic() { let mut b = Builder::new(); b.out .entry(value_node!("arg1".to_string(), 1, 0)) .or_insert(Rc::new(Val::String("bar".to_string()))); b.out.entry(value_node!("tstmac".to_string(), 1, 0)).or_insert(Rc::new(Val::Macro(MacroDef{ argdefs: vec![value_node!("arg2".to_string(), 1, 0)], fields: vec![ (make_tok!("foo", 1, 1), Expression::Simple(Value::Symbol(value_node!("arg1".to_string(), 1, 1)))), ], pos: Position::new(1, 0), }))); test_expr_to_val(vec![ (Expression::Call(CallDef{ macroref: make_selector!(make_expr!("tstmac")), arglist: vec![Expression::Simple(Value::String(value_node!("bar".to_string(), 1, 1)))], pos: Position::new(1, 1), }), Val::Tuple(vec![ (value_node!("foo".to_string(), 1, 0), Rc::new(Val::String("bar".to_string()))), ])), ], b); } #[test] fn test_select_expr() { let mut b = Builder::new(); b.out .entry(value_node!("foo".to_string(), 1, 0)) .or_insert(Rc::new(Val::String("bar".to_string()))); b.out .entry(value_node!("baz".to_string(), 1, 0)) .or_insert(Rc::new(Val::String("boo".to_string()))); test_expr_to_val(vec![ (Expression::Select(SelectDef{ val: Box::new(Expression::Simple(Value::Symbol(value_node!("foo".to_string(), 1, 1)))), default: Box::new(Expression::Simple(Value::Int(value_node!(1, 1, 1)))), tuple: vec![ (make_tok!("foo", 1, 1), Expression::Simple(Value::String(value_node!("2".to_string(), 1, 1)))), (make_tok!("bar", 1, 1), Expression::Simple(Value::Int(value_node!(2, 1, 1)))), ], pos: Position::new(1, 0), }), Val::Int(2)), (Expression::Select(SelectDef{ val: Box::new(Expression::Simple(Value::Symbol(value_node!("baz".to_string(), 1, 1)))), default: Box::new(Expression::Simple(Value::Int(value_node!(1, 1, 1)))), tuple: vec![ (make_tok!("bar", 1, 1), Expression::Simple(Value::Int(value_node!(2, 1, 1)))), (make_tok!("quux", 1, 1), Expression::Simple(Value::String(value_node!("2".to_string(), 1, 1)))), ], pos: Position::new(1, 0), }), // If the field doesn't exist then we get the default. Val::Int(1)), ], b); } #[test] #[should_panic(expected ="Expected String but got Integer in Select expression")] fn test_select_expr_not_a_string() { let mut b = Builder::new(); b.out .entry(value_node!("foo".to_string(), 1, 0)) .or_insert(Rc::new(Val::Int(4))); test_expr_to_val(vec![ (Expression::Select(SelectDef{ val: Box::new(Expression::Simple(Value::Symbol(value_node!("foo".to_string(), 1, 1)))), default: Box::new(Expression::Simple(Value::Int(value_node!(1, 1, 1)))), tuple: vec![ (make_tok!("bar", 1, 1), Expression::Simple(Value::Int(value_node!(2, 1, 1)))), (make_tok!("quux", 1, 1), Expression::Simple(Value::String(value_node!("2".to_string(), 1, 1)))), ], pos: Position::new(1, 0), }), Val::Int(2)), ], b); } #[test] fn test_let_statement() { let mut b = Builder::new(); let stmt = Statement::Let(LetDef { name: make_tok!("foo", 1, 1), value: Expression::Simple(Value::String(value_node!("bar".to_string(), 1, 1))), }); b.build_stmt(&stmt).unwrap(); test_expr_to_val(vec![ (Expression::Simple(Value::Symbol(value_node!("foo".to_string(), 1, 1))), Val::String("bar".to_string())), ], b); } #[test] fn test_build_file_string() { let mut b = Builder::new(); b.build_file_string("foo.ucg", "let foo = 1;".to_string()).unwrap(); let key = value_node!("foo".to_string(), 1, 0); assert!(b.out.contains_key(&key)); } #[test] fn test_asset_symbol_lookups() { let mut b = Builder::new(); b.assets.entry(value_node!("foo".to_string(), 1, 0)).or_insert(Rc::new(Val::Tuple(vec![ (value_node!("bar".to_string(), 1, 0), Rc::new(Val::Tuple(vec![ (value_node!("quux".to_string(), 1, 0), Rc::new(Val::Int(1))), ]))), ]))); test_expr_to_val(vec![ (Expression::Simple(Value::Symbol(value_node!("foo".to_string(), 1, 1))), Val::Tuple(vec![ (value_node!("bar".to_string(), 1, 0), Rc::new(Val::Tuple(vec![ (value_node!("quux".to_string(), 1, 0), Rc::new(Val::Int(1))), ]))), ])), ], b); } }