// Copyright 2017 Jeremy Wall // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! The definitions of the ucg AST and Tokens. use std; use std::borrow::Borrow; use std::cmp::Eq; use std::cmp::Ordering; use std::cmp::PartialEq; use std::cmp::PartialOrd; use std::collections::HashSet; use std::convert::Into; use std::fmt; use std::hash::Hash; use std::hash::Hasher; use std::path::PathBuf; use std::rc::Rc; use abortable_parser; use crate::build::Val; pub mod walk; macro_rules! enum_type_equality { ( $slf:ident, $r:expr, $( $l:pat ),* ) => { match $slf { $( $l => { if let $l = $r { true } else { false } } )* } } } /// Represents a line and a column position in UCG code. /// /// It is used for generating error messages mostly. Most all /// parts of the UCG AST have a positioned associated with them. #[derive(Debug, PartialEq, Eq, Clone, PartialOrd, Ord, Hash)] pub struct Position { pub line: usize, pub column: usize, pub offset: usize, } impl Position { /// Construct a new Position. pub fn new(line: usize, column: usize, offset: usize) -> Self { Position { line: line, column: column, offset: offset, } } } impl<'a> From<&'a Position> for Position { fn from(source: &'a Position) -> Self { source.clone() } } /// Defines the types of tokens in UCG syntax. #[derive(Debug, PartialEq, Eq, Clone, PartialOrd, Ord, Hash)] pub enum TokenType { EMPTY, BOOLEAN, END, WS, COMMENT, QUOTED, PIPEQUOTE, DIGIT, BAREWORD, PUNCT, } /// Defines a Token representing a building block of UCG syntax. /// /// Token's are passed to the parser stage to be parsed into an AST. #[derive(Debug, PartialEq, Eq, Clone, PartialOrd, Ord, Hash)] pub struct Token { pub typ: TokenType, pub fragment: String, pub pos: Position, } impl Token { /// Constructs a new Token with a type and line and column information. pub fn new, P: Into>(f: S, typ: TokenType, p: P) -> Self { Self::new_with_pos(f, typ, p.into()) } // Constructs a new Token with a type and a Position. pub fn new_with_pos>(f: S, typ: TokenType, pos: Position) -> Self { Token { typ: typ, fragment: f.into(), pos: pos, } } } impl abortable_parser::Positioned for Token { fn line(&self) -> usize { self.pos.line } fn column(&self) -> usize { self.pos.column } } impl Borrow for Token { fn borrow(&self) -> &str { &self.fragment } } /// Helper macro for making a Positioned Value. macro_rules! value_node { ($v:expr, $p:expr) => { PositionedItem::new_with_pos($v, $p) }; } /// Helper macro for making a Token. #[allow(unused_macros)] macro_rules! make_tok { (EOF => $i:expr) => { Token::new("", TokenType::END, &$i) }; (WS => $i:expr) => { Token::new("", TokenType::WS, &$i) }; (CMT => $e:expr, $i:expr) => { Token::new($e, TokenType::COMMENT, &$i) }; (QUOT => $e:expr, $i:expr) => { Token::new($e, TokenType::QUOTED, &$i) }; (PUNCT => $e:expr, $i:expr) => { Token::new($e, TokenType::PUNCT, &$i) }; (DIGIT => $e:expr, $i:expr) => { Token::new($e, TokenType::DIGIT, &$i) }; ($e:expr, $i:expr) => { Token::new($e, TokenType::BAREWORD, &$i) }; } /// Helper macro for making expressions. #[allow(unused_macros)] macro_rules! make_expr { ($e:expr, $i:expr) => { Expression::Simple(Value::Symbol(PositionedItem::new_with_pos( $e.to_string(), $i, ))) }; ($e:expr => int, $i:expr) => { Expression::Simple(Value::Int(PositionedItem::new_with_pos($e, $i))) }; } /// An ordered list of Name = Value pairs. /// /// This is usually used as the body of a tuple in the UCG AST. pub type FieldList = Vec<(Token, Expression)>; // Token is expected to be a symbol /// Represents a Value in the UCG parsed AST. #[derive(Debug, PartialEq, Clone)] pub enum Value { // Constant Values Empty(Position), Boolean(PositionedItem), Int(PositionedItem), Float(PositionedItem), Str(PositionedItem), Symbol(PositionedItem), // Complex Values Tuple(PositionedItem), List(ListDef), } impl Value { /// Returns the type name of the Value it is called on as a string. pub fn type_name(&self) -> String { match self { &Value::Empty(_) => "EmptyValue".to_string(), &Value::Boolean(_) => "Boolean".to_string(), &Value::Int(_) => "Integer".to_string(), &Value::Float(_) => "Float".to_string(), &Value::Str(_) => "String".to_string(), &Value::Symbol(_) => "Symbol".to_string(), &Value::Tuple(_) => "Tuple".to_string(), &Value::List(_) => "List".to_string(), } } fn fields_to_string(v: &FieldList) -> String { let mut buf = String::new(); buf.push_str("{\n"); for ref t in v.iter() { buf.push_str("\t"); buf.push_str(&t.0.fragment); buf.push_str("\n"); } buf.push_str("}"); return buf; } fn elems_to_string(v: &Vec) -> String { return format!("{}", v.len()); } /// Returns a stringified version of the Value. pub fn to_string(&self) -> String { match self { &Value::Empty(_) => "EmptyValue".to_string(), &Value::Boolean(ref b) => format!("{}", b.val), &Value::Int(ref i) => format!("{}", i.val), &Value::Float(ref f) => format!("{}", f.val), &Value::Str(ref s) => format!("{}", s.val), &Value::Symbol(ref s) => format!("{}", s.val), &Value::Tuple(ref fs) => format!("{}", Self::fields_to_string(&fs.val)), &Value::List(ref def) => format!("[{}]", Self::elems_to_string(&def.elems)), } } /// Returns the position for a Value. pub fn pos(&self) -> &Position { match self { &Value::Empty(ref pos) => pos, &Value::Boolean(ref b) => &b.pos, &Value::Int(ref i) => &i.pos, &Value::Float(ref f) => &f.pos, &Value::Str(ref s) => &s.pos, &Value::Symbol(ref s) => &s.pos, &Value::Tuple(ref fs) => &fs.pos, &Value::List(ref def) => &def.pos, } } /// Returns true if called on a Value that is the same type as itself. pub fn type_equal(&self, target: &Self) -> bool { enum_type_equality!( self, target, &Value::Empty(_), &Value::Boolean(_), &Value::Int(_), &Value::Float(_), &Value::Str(_), &Value::Symbol(_), &Value::Tuple(_), &Value::List(_) ) } } /// Represents an expansion of a Macro that is expected to already have been /// defined. #[derive(PartialEq, Debug, Clone)] pub struct CallDef { pub macroref: Value, pub arglist: Vec, pub pos: Position, } /// Encodes a select expression in the UCG AST. #[derive(PartialEq, Debug, Clone)] pub struct SelectDef { pub val: Box, pub default: Box, pub tuple: FieldList, pub pos: Position, } /// Adds position information to any type `T`. #[derive(Debug, Clone)] pub struct PositionedItem { pub pos: Position, pub val: T, } impl std::fmt::Display for PositionedItem { fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> { write!(f, "{}", self.val) } } impl PositionedItem { /// Constructs a new Positioned with a value, line, and column information. pub fn new>(v: T, p: P) -> Self { Self::new_with_pos(v, p.into()) } /// Constructs a new Positioned with a value and a Position. pub fn new_with_pos(v: T, pos: Position) -> Self { PositionedItem { pos: pos, val: v } } } impl PartialEq for PositionedItem { fn eq(&self, other: &Self) -> bool { self.val == other.val } } impl Eq for PositionedItem {} impl Ord for PositionedItem { fn cmp(&self, other: &Self) -> Ordering { self.val.cmp(&other.val) } } impl PartialOrd for PositionedItem { fn partial_cmp(&self, other: &Self) -> Option { self.val.partial_cmp(&other.val) } } impl Hash for PositionedItem { fn hash(&self, state: &mut H) { self.val.hash(state); } } impl<'a> From<&'a Token> for PositionedItem { fn from(t: &'a Token) -> PositionedItem { PositionedItem { pos: t.pos.clone(), val: t.fragment.to_string(), } } } impl<'a> From<&'a PositionedItem> for PositionedItem { fn from(t: &PositionedItem) -> PositionedItem { PositionedItem { pos: t.pos.clone(), val: t.val.clone(), } } } /// Encodes a macro expression in the UCG AST.. /// /// A macro is a pure function over a tuple. /// MacroDefs are not closures. They can not reference /// any values except what is defined in their arguments. #[derive(PartialEq, Debug, Clone)] pub struct MacroDef { pub argdefs: Vec>, pub fields: FieldList, pub pos: Position, } impl MacroDef { fn symbol_is_in_args(&self, sym: &String) -> bool { for arg in self.argdefs.iter() { if &arg.val == sym { return true; } } return false; } fn validate_value_symbols<'a>( &self, stack: &mut Vec<&'a Expression>, val: &'a Value, ) -> HashSet { let mut bad_symbols = HashSet::new(); if let &Value::Symbol(ref name) = val { if name.val != "self" && !self.symbol_is_in_args(&name.val) { bad_symbols.insert(name.val.clone()); } } else if let &Value::Tuple(ref tuple_node) = val { let fields = &tuple_node.val; for &(_, ref expr) in fields.iter() { stack.push(expr); } } else if let &Value::List(ref def) = val { for elem in def.elems.iter() { stack.push(elem); } } return bad_symbols; } /// Performs typechecking of a ucg macro's arguments to ensure /// that they are valid for the expressions in the macro. pub fn validate_symbols(&self) -> Result<(), HashSet> { let mut bad_symbols = HashSet::new(); for &(_, ref expr) in self.fields.iter() { let mut stack = Vec::new(); stack.push(expr); while stack.len() > 0 { match stack.pop().unwrap() { &Expression::Binary(ref bexpr) => { stack.push(&bexpr.left); if bexpr.kind != BinaryExprType::DOT { stack.push(&bexpr.right); } } &Expression::Grouped(ref expr) => { stack.push(expr); } &Expression::Format(ref def) => { let exprs = &def.args; for arg_expr in exprs.iter() { stack.push(arg_expr); } } &Expression::Select(ref def) => { stack.push(def.default.borrow()); stack.push(def.val.borrow()); for &(_, ref expr) in def.tuple.iter() { stack.push(expr); } } &Expression::Call(ref def) => { for expr in def.arglist.iter() { stack.push(expr); } } &Expression::Simple(ref val) => { let mut syms_set = self.validate_value_symbols(&mut stack, val); bad_symbols.extend(syms_set.drain()); } &Expression::Macro(_) | &Expression::Copy(_) | &Expression::Module(_) | &Expression::Range(_) | &Expression::FuncOp(_) | &Expression::Import(_) | &Expression::Include(_) => { // noop continue; } } } } if bad_symbols.len() > 0 { return Err(bad_symbols); } return Ok(()); } } /// Specifies the types of binary operations supported in /// UCG expression. #[derive(Debug, PartialEq, Clone)] pub enum BinaryExprType { // Math Add, Sub, Mul, Div, // Comparison Equal, GT, LT, NotEqual, GTEqual, LTEqual, REMatch, NotREMatch, IN, // Selector operator DOT, } impl BinaryExprType { /// Returns the precedence level for the binary operator. /// /// Higher values bind tighter than lower values. pub fn precedence_level(&self) -> u32 { match self { // Equality operators are least tightly bound BinaryExprType::Equal => 1, BinaryExprType::NotEqual => 1, BinaryExprType::GTEqual => 1, BinaryExprType::LTEqual => 1, BinaryExprType::GT => 1, BinaryExprType::LT => 1, BinaryExprType::REMatch => 1, BinaryExprType::NotREMatch => 1, BinaryExprType::IN => 1, // Sum operators are next least tightly bound BinaryExprType::Add => 2, BinaryExprType::Sub => 2, // Product operators are next tightly bound BinaryExprType::Mul => 3, BinaryExprType::Div => 3, // Dot operators are most tightly bound. BinaryExprType::DOT => 4, } } } /// Represents an expression with a left and a right side. #[derive(Debug, PartialEq, Clone)] pub struct BinaryOpDef { pub kind: BinaryExprType, pub left: Box, pub right: Box, pub pos: Position, } /// Encodes a tuple Copy expression in the UCG AST. #[derive(Debug, PartialEq, Clone)] pub struct CopyDef { pub selector: Value, pub fields: FieldList, pub pos: Position, } /// Encodes a format expression in the UCG AST. #[derive(Debug, PartialEq, Clone)] pub struct FormatDef { pub template: String, pub args: Vec, pub pos: Position, } /// Encodes an import statement in the UCG AST. #[derive(Debug, PartialEq, Clone)] pub struct IncludeDef { pub pos: Position, pub path: Token, pub typ: Token, } /// Encodes a list expression in the UCG AST. #[derive(Debug, PartialEq, Clone)] pub struct ListDef { pub elems: Vec, pub pos: Position, } #[derive(Debug, PartialEq, Clone)] pub enum FuncOpDef { Reduce(ReduceOpDef), Map(MapFilterOpDef), Filter(MapFilterOpDef), } #[derive(Debug, PartialEq, Clone)] pub struct ReduceOpDef { pub mac: PositionedItem, pub field: PositionedItem, pub acc: Box, pub target: Box, pub pos: Position, } /// MapFilterOpDef implements the list operations in the UCG AST. #[derive(Debug, PartialEq, Clone)] pub struct MapFilterOpDef { pub mac: PositionedItem, pub field: PositionedItem, pub target: Box, pub pos: Position, } impl FuncOpDef { pub fn pos(&self) -> &Position { match self { FuncOpDef::Map(def) => &def.pos, FuncOpDef::Filter(def) => &def.pos, FuncOpDef::Reduce(def) => &def.pos, } } } // TODO(jwall): this should probably be moved to a Val::Module IR type. #[derive(Debug, PartialEq, Clone)] pub struct ModuleDef { pub pos: Position, pub arg_set: FieldList, pub arg_tuple: Option>, pub statements: Vec, } impl ModuleDef { pub fn new>(arg_set: FieldList, stmts: Vec, pos: P) -> Self { ModuleDef { pos: pos.into(), arg_set: arg_set, arg_tuple: None, statements: stmts, } } pub fn imports_to_absolute(&mut self, base: PathBuf) { let rewrite_import = |e: &mut Expression| { if let Expression::Include(ref mut def) = e { let path = PathBuf::from(&def.path.fragment); if path.is_relative() { def.path.fragment = base .join(path) .canonicalize() .unwrap() .to_string_lossy() .to_string(); } } if let Expression::Import(ref mut def) = e { let path = PathBuf::from(&def.path.fragment); if path.is_relative() { def.path.fragment = base .join(path) .canonicalize() .unwrap() .to_string_lossy() .to_string(); } } }; let walker = walk::AstWalker::new().with_expr_handler(&rewrite_import); for stmt in self.statements.iter_mut() { walker.walk_statement(stmt); } } } /// RangeDef defines a range with optional step. #[derive(Debug, PartialEq, Clone)] pub struct RangeDef { pub pos: Position, pub start: Box, pub step: Option>, pub end: Box, } /// Encodes an import expression in the UCG AST. #[derive(Debug, PartialEq, Clone)] pub struct ImportDef { pub pos: Position, pub path: Token, } /// Encodes a ucg expression. Expressions compute a value from. #[derive(Debug, PartialEq, Clone)] pub enum Expression { // Base Expression Simple(Value), // Binary expressions Binary(BinaryOpDef), // Complex Expressions Copy(CopyDef), Range(RangeDef), // TODO(jwall): This should really store it's position :-( Grouped(Box), Format(FormatDef), Include(IncludeDef), Import(ImportDef), Call(CallDef), Macro(MacroDef), Select(SelectDef), FuncOp(FuncOpDef), Module(ModuleDef), } impl Expression { /// Returns the position of the Expression. pub fn pos(&self) -> &Position { match self { &Expression::Simple(ref v) => v.pos(), &Expression::Binary(ref def) => &def.pos, &Expression::Copy(ref def) => &def.pos, &Expression::Range(ref def) => &def.pos, &Expression::Grouped(ref expr) => expr.pos(), &Expression::Format(ref def) => &def.pos, &Expression::Call(ref def) => &def.pos, &Expression::Macro(ref def) => &def.pos, &Expression::Module(ref def) => &def.pos, &Expression::Select(ref def) => &def.pos, &Expression::FuncOp(ref def) => def.pos(), &Expression::Include(ref def) => &def.pos, &Expression::Import(ref def) => &def.pos, } } } impl fmt::Display for Expression { fn fmt(&self, w: &mut fmt::Formatter) -> fmt::Result { match self { &Expression::Simple(ref v) => { write!(w, "{}", v.to_string())?; } &Expression::Binary(_) => { write!(w, "")?; } &Expression::FuncOp(_) => { write!(w, "")?; } &Expression::Copy(_) => { write!(w, "")?; } &Expression::Range(_) => { write!(w, "")?; } &Expression::Grouped(_) => { write!(w, "()")?; } &Expression::Format(_) => { write!(w, "")?; } &Expression::Call(_) => { write!(w, "")?; } &Expression::Macro(_) => { write!(w, "")?; } &Expression::Module(_) => { write!(w, "")?; } &Expression::Select(_) => { write!(w, "