// Copyright 2017 Jeremy Wall // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! The build stage of the ucg compiler. use std::cell::RefCell; use std::collections::hash_map::Entry; use std::collections::HashMap; use std::env; use std::error::Error; use std::fs::File; use std::io::Read; use std::ops::Deref; use std::path::PathBuf; use std::rc::Rc; use std::string::ToString; use regex; use simple_error; use crate::ast::*; use crate::build::scope::{find_in_fieldlist, Scope, ValueMap}; use crate::convert::ImporterRegistry; use crate::error; use crate::format; use crate::iter::OffsetStrIter; use crate::parse::parse; pub mod assets; pub mod ir; pub mod scope; mod stdlib; pub use self::ir::Val; enum ProcessingOpType { Map, Filter, } impl MacroDef { /// Expands a ucg Macro using the given arguments into a new Tuple. pub fn eval( &self, root: PathBuf, parent_builder: &FileBuilder, mut args: Vec>, ) -> Result, Rc)>, Box> { // Error conditions. If the args don't match the length and types of the argdefs then this is // macro call error. if args.len() > self.argdefs.len() { return Err(Box::new(error::BuildError::new( format!( "Macro called with too many args in file: {}", root.to_string_lossy() ), error::ErrorType::BadArgLen, self.pos.clone(), ))); } // If the args don't match the types required by the expressions then that is a TypeFail. // If the expressions reference Symbols not defined in the MacroDef that is also an error. // TODO(jwall): We should probably enforce that the Expression Symbols must be in argdefs rules // at Macro definition time not evaluation time. let mut scope = HashMap::, Rc>::new(); for (i, arg) in args.drain(0..).enumerate() { scope.entry(self.argdefs[i].clone()).or_insert(arg.clone()); } let mut b = parent_builder.clone_builder(root); b.set_build_output(scope); let mut result: Vec<(PositionedItem, Rc)> = Vec::new(); for &(ref key, ref expr) in self.fields.iter() { // We clone the expressions here because this macro may be consumed // multiple times in the future. let scope = b.scope.spawn_child(); let val = b.eval_expr(expr, &scope)?; result.push((key.into(), val.clone())); } Ok(result) } } /// The result of a build. type BuildResult = Result<(), Box>; /// AssertCollector collects the results of assertions in the UCG AST. pub struct AssertCollector { pub counter: i32, pub success: bool, pub summary: String, pub failures: String, } /// Builder handles building ucg code for a single file. pub struct FileBuilder<'a> { file: PathBuf, std: Rc>, import_path: &'a Vec, validate_mode: bool, pub assert_collector: AssertCollector, strict: bool, scope: Scope, import_registry: ImporterRegistry, // NOTE(jwall): We use interior mutability here because we need // our asset cache to be shared by multiple different sub-builders. // We use Rc to handle the reference counting for us and we use // RefCell to give us interior mutability. This sacrifices our // compile time memory safety for runtime checks. However it's // acceptable in this case since I can't figure out a better way to // handle it. // The assets are other parsed files from import statements. They // are keyed by the canonicalized import path. This acts as a cache // so multiple imports of the same file don't have to be parsed // multiple times. assets: Rc>, pub is_module: bool, pub last: Option>, pub out_lock: Option<(String, Rc)>, } macro_rules! eval_binary_expr { ($case:pat, $pos:ident, $rside:ident, $result:expr, $msg:expr) => { match $rside.as_ref() { $case => { return Ok(Rc::new($result)); } val => { return Err(Box::new(error::BuildError::new( format!("Expected {} but got {}", $msg, val), error::ErrorType::TypeFail, $pos.clone(), ))); } } }; } // TODO(jwall): Use the builder patter here. Just like AstWalker. impl<'a> FileBuilder<'a> { /// Constructs a new Builder. pub fn new>( file: P, import_paths: &'a Vec, cache: Rc>, ) -> Self { let env_vars: Vec<(String, String)> = env::vars().collect(); let scope = scope::Scope::new(Rc::new(Val::Env(env_vars))); Self::new_with_scope(file, import_paths, cache, scope) } /// Constructs a new Builder with a provided scope. pub fn new_with_scope>( file: P, import_paths: &'a Vec, cache: Rc>, scope: Scope, ) -> Self { let file = file.into(); let std = Rc::new(stdlib::get_libs()); FileBuilder { // Our import stack is initialized with ourself. file: file, std: std, import_path: import_paths, validate_mode: false, assert_collector: AssertCollector { counter: 0, success: true, summary: String::new(), failures: String::new(), }, scope: scope, strict: true, import_registry: ImporterRegistry::make_registry(), assets: cache, out_lock: None, is_module: false, last: None, } } pub fn clone_builder>(&self, file: P) -> Self { FileBuilder { file: file.into(), std: self.std.clone(), import_path: self.import_path, validate_mode: false, assert_collector: AssertCollector { counter: 0, success: true, summary: String::new(), failures: String::new(), }, strict: true, assets: self.assets.clone(), // This is admittedly a little wasteful but we can live with it for now. import_registry: ImporterRegistry::make_registry(), scope: self.scope.spawn_clean(), out_lock: None, is_module: false, last: None, } } pub fn set_build_output(&mut self, scope: ValueMap) { self.scope.build_output = scope; } pub fn set_strict(&mut self, to: bool) { self.strict = to; } fn eval_tuple( &self, fields: &Vec<(Token, Expression)>, scope: &Scope, ) -> Result, Box> { let mut new_fields = Vec::<(PositionedItem, Rc)>::new(); for &(ref name, ref expr) in fields.iter() { let val = self.eval_expr(expr, scope)?; new_fields.push((name.into(), val)); } Ok(Rc::new(Val::Tuple(new_fields))) } fn eval_list(&self, def: &ListDef, scope: &Scope) -> Result, Box> { let mut vals = Vec::new(); for expr in def.elems.iter() { vals.push(self.eval_expr(expr, scope)?); } Ok(Rc::new(Val::List(vals))) } fn eval_value(&self, v: &Value, scope: &Scope) -> Result, Box> { match v { &Value::Empty(_) => Ok(Rc::new(Val::Empty)), &Value::Boolean(ref b) => Ok(Rc::new(Val::Boolean(b.val))), &Value::Int(ref i) => Ok(Rc::new(Val::Int(i.val))), &Value::Float(ref f) => Ok(Rc::new(Val::Float(f.val))), &Value::Str(ref s) => Ok(Rc::new(Val::Str(s.val.to_string()))), &Value::Symbol(ref s) => { scope .lookup_sym(&(s.into()), true) .ok_or(Box::new(error::BuildError::new( format!("Unable to find binding {}", s.val,), error::ErrorType::NoSuchSymbol, v.pos().clone(), ))) } &Value::List(ref def) => self.eval_list(def, scope), &Value::Tuple(ref tuple) => self.eval_tuple(&tuple.val, scope), } } /// Returns a Val by name from previously built UCG. pub fn get_out_by_name(&self, name: &str) -> Option> { let key = PositionedItem { pos: Position::new(0, 0, 0), val: name.to_string(), }; self.scope.lookup_sym(&key, true) } /// Puts the builder in validation mode. /// /// Among other things this means that assertions will be evaluated and their results /// will be saved in a report for later output. pub fn enable_validate_mode(&mut self) { self.validate_mode = true; } /// Builds a list of parsed UCG Statements. pub fn eval_stmts(&mut self, ast: &Vec) -> BuildResult { for stmt in ast.iter() { self.eval_stmt(stmt)?; } Ok(()) } fn eval_input(&mut self, input: OffsetStrIter) -> Result, Box> { match parse(input.clone()) { Ok(stmts) => { //panic!("Successfully parsed {}", input); let mut out: Option> = None; for stmt in stmts.iter() { out = Some(self.eval_stmt(stmt)?); } match out { None => return Ok(Rc::new(Val::Empty)), Some(val) => Ok(val), } } Err(err) => Err(Box::new(error::BuildError::new( format!("{}", err,), error::ErrorType::ParseError, (&input).into(), ))), } } /// Evaluate an input string as UCG. pub fn eval_string(&mut self, input: &str) -> Result, Box> { self.eval_input(OffsetStrIter::new(input)) } /// Builds a ucg file at the named path. pub fn build(&mut self) -> BuildResult { let mut f = File::open(&self.file)?; let mut s = String::new(); f.read_to_string(&mut s)?; let eval_result = self.eval_string(&s); match eval_result { Ok(v) => { self.last = Some(v); Ok(()) } Err(e) => { let err = simple_error::SimpleError::new( format!( "Error building file: {}\n{}", self.file.to_string_lossy(), e.as_ref() ) .as_ref(), ); Err(Box::new(err)) } } } fn check_reserved_word(name: &str) -> bool { match name { "self" | "assert" | "true" | "false" | "let" | "import" | "as" | "select" | "macro" | "module" | "env" | "map" | "filter" | "NULL" | "out" => true, _ => false, } } fn detect_import_cycle(&self, path: &str) -> bool { self.scope .import_stack .iter() .find(|p| *p == path) .is_some() } fn find_file>( &self, path: P, use_import_path: bool, ) -> Result> { // Try a relative path first. let path = path.into(); let mut normalized = self.file.parent().unwrap().to_path_buf(); if path.is_relative() { normalized.push(&path); // First see if the normalized file exists or not. if !normalized.exists() && use_import_path { // If it does not then look for it in the list of import_paths for mut p in self.import_path.iter().cloned() { p.push(&path); if p.exists() { normalized = p; break; } } } } else { normalized = path; } Ok(normalized.canonicalize()?) } fn eval_import(&self, def: &ImportDef) -> Result, Box> { // Look for a std file first. if def.path.fragment.starts_with("std/") { eprintln!("Processing std lib path: {}", def.path.fragment); if self.std.contains_key(&def.path.fragment) { // Okay then this is a stdlib and it's special. // Introduce a scope so the above borrow is dropped before we modify // the cache below. // Only parse the file once on import. let path = PathBuf::from(&def.path.fragment); let maybe_asset = self.assets.borrow().get(&path)?; let result = match maybe_asset { Some(v) => v.clone(), None => { let mut b = self.clone_builder(&def.path.fragment); b.eval_string(self.std.get(&def.path.fragment).unwrap())?; b.get_outputs_as_val() } }; let mut mut_assets_cache = self.assets.borrow_mut(); mut_assets_cache.stash(path, result.clone())?; return Ok(result); } else { return Err(Box::new(error::BuildError::new( format!("No such import {} in the std library.", def.path.fragment), error::ErrorType::Unsupported, def.pos.clone(), ))); } } // Try a relative path first. let normalized = self.find_file(&def.path.fragment, true)?; if self.detect_import_cycle(normalized.to_string_lossy().as_ref()) { return Err(Box::new(error::BuildError::new( format!( "Import Cycle Detected!!!! {} is already in import stack: {:?}", normalized.to_string_lossy(), self.scope.import_stack, ), error::ErrorType::Unsupported, def.pos.clone(), ))); } // Introduce a scope so the above borrow is dropped before we modify // the cache below. // Only parse the file once on import. let maybe_asset = self.assets.borrow().get(&normalized)?; let result = match maybe_asset { Some(v) => v.clone(), None => { let mut b = self.clone_builder(normalized.clone()); b.build()?; b.get_outputs_as_val() } }; let mut mut_assets_cache = self.assets.borrow_mut(); mut_assets_cache.stash(normalized.clone(), result.clone())?; return Ok(result); } fn eval_let(&mut self, def: &LetDef) -> Result, Box> { let child_scope = self.scope.clone(); let val = self.eval_expr(&def.value, &child_scope)?; let name = &def.name; if Self::check_reserved_word(&name.fragment) { return Err(Box::new(error::BuildError::new( format!("Let {} binding collides with reserved word", name.fragment), error::ErrorType::ReservedWordError, name.pos.clone(), ))); } match self.scope.build_output.entry(name.into()) { Entry::Occupied(e) => { return Err(Box::new(error::BuildError::new( format!( "Binding \ for {:?} already \ exists", e.key(), ), error::ErrorType::DuplicateBinding, def.name.pos.clone(), ))); } Entry::Vacant(e) => { e.insert(val.clone()); } } Ok(val) } fn eval_stmt(&mut self, stmt: &Statement) -> Result, Box> { let child_scope = self.scope.clone(); match stmt { &Statement::Assert(ref expr) => self.build_assert(&expr, &child_scope), &Statement::Let(ref def) => self.eval_let(def), &Statement::Expression(ref expr) => self.eval_expr(expr, &child_scope), // Only one output can be used per file. Right now we enforce this by // having a single builder per file. &Statement::Output(ref typ, ref expr) => { if let None = self.out_lock { let val = self.eval_expr(expr, &child_scope)?; self.out_lock = Some((typ.fragment.to_string(), val.clone())); Ok(val) } else { Err(Box::new(error::BuildError::new( format!("You can only have one output per file."), error::ErrorType::DuplicateBinding, typ.pos.clone(), ))) } } } } fn add_vals( &self, pos: &Position, left: Rc, right: Rc, ) -> Result, Box> { match *left { Val::Int(i) => { eval_binary_expr!(&Val::Int(ii), pos, right, Val::Int(i + ii), "Integer") } Val::Float(f) => { eval_binary_expr!(&Val::Float(ff), pos, right, Val::Float(f + ff), "Float") } Val::Str(ref s) => match right.as_ref() { &Val::Str(ref ss) => { return Ok(Rc::new(Val::Str([s.to_string(), ss.clone()].concat()))) } val => { return Err(Box::new(error::BuildError::new( format!( "Expected \ String \ but got \ {:?}", val ), error::ErrorType::TypeFail, pos.clone(), ))) } }, Val::List(ref l) => match right.as_ref() { &Val::List(ref r) => { let mut new_vec = Vec::new(); new_vec.extend(l.iter().cloned()); new_vec.extend(r.iter().cloned()); return Ok(Rc::new(Val::List(new_vec))); } val => { return Err(Box::new(error::BuildError::new( format!( "Expected \ List \ but got \ {:?}", val ), error::ErrorType::TypeFail, pos.clone(), ))) } }, ref expr => { return Err(Box::new(error::BuildError::new( format!("{} does not support the '+' operation", expr.type_name()), error::ErrorType::Unsupported, pos.clone(), ))) } } } fn subtract_vals( &self, pos: &Position, left: Rc, right: Rc, ) -> Result, Box> { match *left { Val::Int(i) => { eval_binary_expr!(&Val::Int(ii), pos, right, Val::Int(i - ii), "Integer") } Val::Float(f) => { eval_binary_expr!(&Val::Float(ff), pos, right, Val::Float(f - ff), "Float") } ref expr => { return Err(Box::new(error::BuildError::new( format!("{} does not support the '-' operation", expr.type_name()), error::ErrorType::Unsupported, pos.clone(), ))) } } } fn multiply_vals( &self, pos: &Position, left: Rc, right: Rc, ) -> Result, Box> { match *left { Val::Int(i) => { eval_binary_expr!(&Val::Int(ii), pos, right, Val::Int(i * ii), "Integer") } Val::Float(f) => { eval_binary_expr!(&Val::Float(ff), pos, right, Val::Float(f * ff), "Float") } ref expr => { return Err(Box::new(error::BuildError::new( format!("{} does not support the '*' operation", expr.type_name()), error::ErrorType::Unsupported, pos.clone(), ))) } } } fn divide_vals( &self, pos: &Position, left: Rc, right: Rc, ) -> Result, Box> { match *left { Val::Int(i) => { eval_binary_expr!(&Val::Int(ii), pos, right, Val::Int(i / ii), "Integer") } Val::Float(f) => { eval_binary_expr!(&Val::Float(ff), pos, right, Val::Float(f / ff), "Float") } ref expr => { return Err(Box::new(error::BuildError::new( format!("{} does not support the '*' operation", expr.type_name()), error::ErrorType::Unsupported, pos.clone(), ))) } } } fn do_deep_equal( &self, pos: &Position, left: Rc, right: Rc, ) -> Result, Box> { Ok(Rc::new(Val::Boolean( left.equal(right.as_ref(), pos.clone())?, ))) } fn do_not_deep_equal( &self, pos: &Position, left: Rc, right: Rc, ) -> Result, Box> { Ok(Rc::new(Val::Boolean( !left.equal(right.as_ref(), pos.clone())?, ))) } fn do_gt( &self, pos: &Position, left: Rc, right: Rc, ) -> Result, Box> { // first ensure that left and right are numeric vals of the same type. if let &Val::Int(ref l) = left.as_ref() { if let &Val::Int(ref r) = right.as_ref() { return Ok(Rc::new(Val::Boolean(l > r))); } } if let &Val::Float(ref l) = left.as_ref() { if let &Val::Float(ref r) = right.as_ref() { return Ok(Rc::new(Val::Boolean(l > r))); } } Err(Box::new(error::BuildError::new( format!( "Incompatible types for numeric comparison {} with {}", left.type_name(), right.type_name() ), error::ErrorType::TypeFail, pos.clone(), ))) } fn do_lt( &self, pos: &Position, left: Rc, right: Rc, ) -> Result, Box> { // first ensure that left and right are numeric vals of the same type. if let &Val::Int(ref l) = left.as_ref() { if let &Val::Int(ref r) = right.as_ref() { return Ok(Rc::new(Val::Boolean(l < r))); } } if let &Val::Float(ref l) = left.as_ref() { if let &Val::Float(ref r) = right.as_ref() { return Ok(Rc::new(Val::Boolean(l < r))); } } Err(Box::new(error::BuildError::new( format!( "Incompatible types for numeric comparison {} with {}", left.type_name(), right.type_name() ), error::ErrorType::TypeFail, pos.clone(), ))) } fn do_ltequal( &self, pos: &Position, left: Rc, right: Rc, ) -> Result, Box> { if let &Val::Int(ref l) = left.as_ref() { if let &Val::Int(ref r) = right.as_ref() { return Ok(Rc::new(Val::Boolean(l <= r))); } } if let &Val::Float(ref l) = left.as_ref() { if let &Val::Float(ref r) = right.as_ref() { return Ok(Rc::new(Val::Boolean(l <= r))); } } Err(Box::new(error::BuildError::new( format!( "Incompatible types for numeric comparison {} with {}", left.type_name(), right.type_name() ), error::ErrorType::TypeFail, pos.clone(), ))) } fn do_gtequal( &self, pos: &Position, left: Rc, right: Rc, ) -> Result, Box> { if let &Val::Int(ref l) = left.as_ref() { if let &Val::Int(ref r) = right.as_ref() { return Ok(Rc::new(Val::Boolean(l >= r))); } } if let &Val::Float(ref l) = left.as_ref() { if let &Val::Float(ref r) = right.as_ref() { return Ok(Rc::new(Val::Boolean(l >= r))); } } Err(Box::new(error::BuildError::new( format!( "Incompatible types for numeric comparison {} with {}", left.type_name(), right.type_name() ), error::ErrorType::TypeFail, pos.clone(), ))) } fn do_dot_lookup(&self, right: &Expression, scope: &Scope) -> Result, Box> { let pos = right.pos().clone(); match right { Expression::Copy(_) => return self.eval_expr(right, scope), Expression::Call(_) => return self.eval_expr(right, scope), Expression::Simple(Value::Symbol(ref s)) => { scope .lookup_sym(s, true) .ok_or(Box::new(error::BuildError::new( format!("Unable to find binding {}", s.val,), error::ErrorType::NoSuchSymbol, pos, ))) } Expression::Simple(Value::Str(ref s)) => { scope .lookup_sym(s, false) .ok_or(Box::new(error::BuildError::new( format!("Unable to find binding {}", s.val,), error::ErrorType::NoSuchSymbol, pos, ))) } Expression::Simple(Value::Int(ref i)) => { scope.lookup_idx(right.pos(), &Val::Int(i.val)) } _ => { let val = self.eval_expr(right, scope)?; match val.as_ref() { Val::Int(i) => scope.lookup_idx(right.pos(), &Val::Int(*i)), Val::Str(ref s) => scope .lookup_sym(&PositionedItem::new(s.clone(), pos.clone()), false) .ok_or(Box::new(error::BuildError::new( format!("Unable to find binding {}", s,), error::ErrorType::NoSuchSymbol, pos, ))), _ => Err(Box::new(error::BuildError::new( format!("Invalid selector lookup {}", val.type_name(),), error::ErrorType::NoSuchSymbol, pos, ))), } } } } fn do_element_check( &self, left: &Expression, right: &Expression, scope: &Scope, ) -> Result, Box> { // First we evaluate our right hand side so we have a something to search // inside for our left hand expression. let right_pos = right.pos().clone(); let right = self.eval_expr(right, scope)?; // presence checks are only valid for tuples and lists. if !(right.is_tuple() || right.is_list()) { return Err(Box::new(error::BuildError::new( format!( "Invalid righthand type for in operator {}", right.type_name() ), error::ErrorType::TypeFail, right_pos, ))); } if let &Val::List(ref els) = right.as_ref() { let left_pos = left.pos().clone(); let left = self.eval_expr(left, scope)?; for val in els.iter() { if let Ok(b) = self.do_deep_equal(&left_pos, left.clone(), val.clone()) { if let &Val::Boolean(b) = b.as_ref() { if b { // We found a match return Ok(Rc::new(Val::Boolean(true))); } } } } // We didn't find a match anywhere so return false. return Ok(Rc::new(Val::Boolean(false))); } else { // Handle our tuple case since this isn't a list. let mut child_scope = scope.spawn_child(); child_scope.set_curr_val(right.clone()); // Search for the field in our tuple or list. let maybe_val = self.do_dot_lookup(left, &child_scope); // Return the result of the search. return Ok(Rc::new(Val::Boolean(maybe_val.is_ok()))); } } fn eval_re_match( &self, left: Rc, left_pos: &Position, right: Rc, right_pos: &Position, negate: bool, ) -> Result, Box> { let re = if let Val::Str(ref s) = right.as_ref() { regex::Regex::new(s.as_ref())? } else { return Err(Box::new(error::BuildError::new( format!("Expected string for regex but got {}", right.type_name()), error::ErrorType::TypeFail, right_pos.clone(), ))); }; let tgt = if let Val::Str(ref s) = left.as_ref() { s.as_ref() } else { return Err(Box::new(error::BuildError::new( format!("Expected string but got {}", left.type_name()), error::ErrorType::TypeFail, left_pos.clone(), ))); }; return if negate { Ok(Rc::new(Val::Boolean(!re.is_match(tgt)))) } else { Ok(Rc::new(Val::Boolean(re.is_match(tgt)))) }; } fn eval_binary(&self, def: &BinaryOpDef, scope: &Scope) -> Result, Box> { let kind = &def.kind; if let &BinaryExprType::IN = kind { return self.do_element_check(&def.left, &def.right, scope); }; let left = self.eval_expr(&def.left, scope)?; let mut child_scope = scope.spawn_child(); child_scope.set_curr_val(left.clone()); child_scope.search_curr_val = true; if let &BinaryExprType::DOT = kind { return self.do_dot_lookup(&def.right, &child_scope); }; // TODO(jwall): We need to handle call and copy expressions specially. let right = match self.eval_expr(&def.right, scope) { Ok(v) => v, Err(e) => return Err(e), }; match kind { // Handle math and concatenation operators here &BinaryExprType::Add => self.add_vals(&def.pos, left, right), &BinaryExprType::Sub => self.subtract_vals(&def.pos, left, right), &BinaryExprType::Mul => self.multiply_vals(&def.pos, left, right), &BinaryExprType::Div => self.divide_vals(&def.pos, left, right), // Handle Comparison operators here &BinaryExprType::Equal => self.do_deep_equal(&def.pos, left, right), &BinaryExprType::GT => self.do_gt(&def.pos, left, right), &BinaryExprType::LT => self.do_lt(&def.pos, left, right), &BinaryExprType::GTEqual => self.do_gtequal(&def.pos, left, right), &BinaryExprType::LTEqual => self.do_ltequal(&def.pos, left, right), &BinaryExprType::NotEqual => self.do_not_deep_equal(&def.pos, left, right), &BinaryExprType::REMatch => { self.eval_re_match(left, def.left.pos(), right, def.right.pos(), false) } &BinaryExprType::NotREMatch => { self.eval_re_match(left, def.left.pos(), right, def.right.pos(), true) } &BinaryExprType::IN | &BinaryExprType::DOT => panic!("Unreachable"), } } fn get_outputs_as_val(&mut self) -> Rc { let fields: Vec<(PositionedItem, Rc)> = self.scope.build_output.drain().collect(); Rc::new(Val::Tuple(fields)) } fn copy_from_base( &self, src_fields: &Vec<(PositionedItem, Rc)>, overrides: &Vec<(Token, Expression)>, scope: &Scope, ) -> Result, Box> { let mut m = HashMap::, (i32, Rc)>::new(); // loop through fields and build up a hashmap let mut count = 0; for &(ref key, ref val) in src_fields.iter() { if let Entry::Vacant(v) = m.entry(key.clone()) { v.insert((count, val.clone())); count += 1; } else { return Err(Box::new(error::BuildError::new( format!( "Duplicate \ field: {} in \ tuple", key.val ), error::ErrorType::TypeFail, key.pos.clone(), ))); } } for &(ref key, ref val) in overrides.iter() { let expr_result = self.eval_expr(val, scope)?; match m.entry(key.into()) { // brand new field here. Entry::Vacant(v) => { v.insert((count, expr_result)); count += 1; } Entry::Occupied(mut v) => { // overriding field here. // Ensure that the new type matches the old type. let src_val = v.get().clone(); if src_val.1.type_equal(&expr_result) || src_val.1.is_empty() || expr_result.is_empty() { v.insert((src_val.0, expr_result)); } else { return Err(Box::new(error::BuildError::new( format!( "Expected type {} for field {} but got {}", src_val.1.type_name(), key.fragment, expr_result.type_name() ), error::ErrorType::TypeFail, key.pos.clone(), ))); } } }; } let mut new_fields: Vec<(PositionedItem, (i32, Rc))> = m.drain().collect(); // We want to maintain our order for the fields to make comparing tuples // easier in later code. So we sort by the field order before constructing a new tuple. new_fields.sort_by(|a, b| { let ta = a.1.clone(); let tb = b.1.clone(); ta.0.cmp(&tb.0) }); return Ok(Rc::new(Val::Tuple( new_fields .iter() .map(|a| { let first = a.0.clone(); let t = a.1.clone(); (first, t.1) }) .collect(), ))); } fn eval_copy(&self, def: &CopyDef, scope: &Scope) -> Result, Box> { let v = self.eval_value(&def.selector, scope)?; if let &Val::Tuple(ref src_fields) = v.as_ref() { let mut child_scope = scope.spawn_child(); child_scope.set_curr_val(v.clone()); return self.copy_from_base(&src_fields, &def.fields, &child_scope); } if let &Val::Module(ref mod_def) = v.as_ref() { let maybe_tpl = mod_def.clone().arg_tuple.unwrap().clone(); if let &Val::Tuple(ref src_fields) = maybe_tpl.as_ref() { // 1. First we create a builder. let mut b = self.clone_builder(self.file.clone()); b.is_module = true; // 2. We construct an argument tuple by copying from the defs // argset. // Push our base tuple on the stack so the copy can use // self to reference it. let mut child_scope = scope.spawn_child(); child_scope.set_curr_val(maybe_tpl.clone()); let mod_args = self.copy_from_base(src_fields, &def.fields, &child_scope)?; // put our copied parameters tuple in our builder under the mod key. let mod_key = PositionedItem::new_with_pos(String::from("mod"), Position::new(0, 0, 0)); match b.scope.build_output.entry(mod_key) { Entry::Occupied(e) => { return Err(Box::new(error::BuildError::new( format!( "Binding \ for {:?} already \ exists in module", e.key(), ), error::ErrorType::DuplicateBinding, mod_def.pos.clone(), ))); } Entry::Vacant(e) => { e.insert(mod_args.clone()); } } // 4. Evaluate all the statements using the builder. b.eval_stmts(&mod_def.statements)?; // 5. Take all of the bindings in the module and construct a new // tuple using them. return Ok(b.get_outputs_as_val()); } else { return Err(Box::new(error::BuildError::new( format!( "Weird value stored in our module parameters slot {:?}", mod_def.arg_tuple ), error::ErrorType::TypeFail, def.selector.pos().clone(), ))); } } Err(Box::new(error::BuildError::new( format!("Expected Tuple or Module got {}", v), error::ErrorType::TypeFail, def.selector.pos().clone(), ))) } fn eval_format(&self, def: &FormatDef, scope: &Scope) -> Result, Box> { let tmpl = &def.template; let args = &def.args; let mut vals = Vec::new(); for v in args.iter() { let rcv = self.eval_expr(v, scope)?; vals.push(rcv.deref().clone()); } let formatter = format::Formatter::new(tmpl.clone(), vals); Ok(Rc::new(Val::Str(formatter.render(&def.pos)?))) } fn eval_call(&self, def: &CallDef, scope: &Scope) -> Result, Box> { let args = &def.arglist; let v = self.eval_value(&def.macroref, scope)?; if let &Val::Macro(ref m) = v.deref() { // Congratulations this is actually a macro. let mut argvals: Vec> = Vec::new(); for arg in args.iter() { argvals.push(self.eval_expr(arg, scope)?); } let fields = m.eval(self.file.clone(), self, argvals)?; return Ok(Rc::new(Val::Tuple(fields))); } Err(Box::new(error::BuildError::new( // We should pretty print the selectors here. format!("{} is not a Macro", v), error::ErrorType::TypeFail, def.pos.clone(), ))) } fn eval_macro_def(&self, def: &MacroDef) -> Result, Box> { match def.validate_symbols() { Ok(()) => Ok(Rc::new(Val::Macro(def.clone()))), Err(set) => Err(Box::new(error::BuildError::new( format!( "Macro has the following \ undefined symbols: {:?}", set ), error::ErrorType::NoSuchSymbol, def.pos.clone(), ))), } } fn file_dir(&self) -> PathBuf { return if self.file.is_file() { // Only use the dirname portion if the root is a file. self.file.parent().unwrap().to_path_buf() } else { // otherwise use clone of the root.. self.file.clone() }; } fn eval_module_def(&self, def: &ModuleDef, scope: &Scope) -> Result, Box> { let root = self.file_dir(); // Always work on a copy. The original should not be modified. let mut def = def.clone(); // First we rewrite the imports to be absolute paths. def.imports_to_absolute(root); // Then we create our tuple default. def.arg_tuple = Some(self.eval_tuple(&def.arg_set, scope)?); // Then we construct a new Val::Module Ok(Rc::new(Val::Module(def))) } fn eval_select(&self, def: &SelectDef, scope: &Scope) -> Result, Box> { let target = &def.val; let def_expr = &def.default; let fields = &def.tuple; // First resolve the target expression. let v = self.eval_expr(target, scope)?; // Second ensure that the expression resolves to a string. if let &Val::Str(ref name) = v.deref() { // Third find the field with that name in the tuple. for &(ref fname, ref val_expr) in fields.iter() { if &fname.fragment == name { // Fourth return the result of evaluating that field. return self.eval_expr(val_expr, scope); } } // Otherwise return the default. return self.eval_expr(def_expr, scope); } else if let &Val::Boolean(b) = v.deref() { for &(ref fname, ref val_expr) in fields.iter() { if &fname.fragment == "true" && b { // Fourth return the result of evaluating that field. return self.eval_expr(val_expr, scope); } else if &fname.fragment == "false" && !b { return self.eval_expr(val_expr, scope); } } // Otherwise return the default. return self.eval_expr(def_expr, scope); } else { return Err(Box::new(error::BuildError::new( format!( "Expected String but got \ {} in Select expression", v.type_name() ), error::ErrorType::TypeFail, def.pos.clone(), ))); } } fn eval_functional_list_processing( &self, elems: &Vec>, def: &MacroDef, outfield: &PositionedItem, typ: ProcessingOpType, ) -> Result, Box> { let mut out = Vec::new(); for item in elems.iter() { let argvals = vec![item.clone()]; let fields = def.eval(self.file.clone(), self, argvals)?; if let Some(v) = find_in_fieldlist(&outfield.val, &fields) { match typ { ProcessingOpType::Map => { out.push(v.clone()); } ProcessingOpType::Filter => { if let &Val::Empty = v.as_ref() { // noop continue; } else if let &Val::Boolean(false) = v.as_ref() { // noop continue; } out.push(item.clone()); } } } } return Ok(Rc::new(Val::List(out))); } fn eval_functional_tuple_processing( &self, fs: &Vec<(PositionedItem, Rc)>, def: &MacroDef, outfield: &PositionedItem, typ: ProcessingOpType, ) -> Result, Box> { let mut out = Vec::new(); for &(ref name, ref val) in fs { let argvals = vec![Rc::new(Val::Str(name.val.clone())), val.clone()]; let fields = def.eval(self.file.clone(), self, argvals)?; if let Some(v) = find_in_fieldlist(&outfield.val, &fields) { match typ { ProcessingOpType::Map => { if let &Val::List(ref fs) = v.as_ref() { if fs.len() == 2 { // index 0 should be a string for the new field name. // index 1 should be the val. let new_name = if let &Val::Str(ref s) = fs[0].as_ref() { s.clone() } else { return Err(Box::new(error::BuildError::new( format!( "map on tuple expects the first item out list to be a string but got size {}", fs[0].type_name() ), error::ErrorType::TypeFail, def.pos.clone(), ))); }; out.push(( PositionedItem::new(new_name, name.pos.clone()), fs[1].clone(), )); } else { return Err(Box::new(error::BuildError::new( format!( "map on a tuple field expects a list of size 2 as output but got size {}", fs.len() ), error::ErrorType::TypeFail, def.pos.clone(), ))); } } else { return Err(Box::new(error::BuildError::new( format!( "map on a tuple field expects a list as output but got {:?}", v.type_name() ), error::ErrorType::TypeFail, def.pos.clone(), ))); } } ProcessingOpType::Filter => { if let &Val::Empty = v.as_ref() { // noop continue; } else if let &Val::Boolean(false) = v.as_ref() { // noop continue; } out.push((name.clone(), val.clone())); } } } else { return Err(Box::new(error::BuildError::new( format!( "Result {} field does not exist in macro body!", outfield.val ), error::ErrorType::NoSuchSymbol, def.pos.clone(), ))); } } Ok(Rc::new(Val::Tuple(out))) } fn eval_reduce_op(&self, def: &ReduceOpDef, scope: &Scope) -> Result, Box> { let maybe_target = self.eval_expr(&def.target, scope)?; let mut acc = self.eval_expr(&def.acc, scope)?; let maybe_mac = self.eval_value(&Value::Symbol(def.mac.clone()), &self.scope.clone())?; let macdef = match maybe_mac.as_ref() { &Val::Macro(ref macdef) => macdef, _ => { return Err(Box::new(error::BuildError::new( format!("Expected macro but got {:?}", def.mac), error::ErrorType::TypeFail, def.pos.clone(), ))); } }; match maybe_target.as_ref() { &Val::List(ref elems) => { for item in elems.iter() { let argvals = vec![acc.clone(), item.clone()]; let fields = macdef.eval(self.file.clone(), self, argvals)?; if let Some(v) = find_in_fieldlist(&def.field.val, &fields) { acc = v.clone(); } else { return Err(Box::new(error::BuildError::new( format!("Result {} field does not exist in macro body!", def.field), error::ErrorType::NoSuchSymbol, def.pos.clone(), ))); } } } &Val::Tuple(ref fs) => { for &(ref name, ref val) in fs.iter() { let argvals = vec![ acc.clone(), Rc::new(Val::Str(name.val.clone())), val.clone(), ]; let fields = macdef.eval(self.file.clone(), self, argvals)?; if let Some(v) = find_in_fieldlist(&def.field.val, &fields) { acc = v.clone(); } else { return Err(Box::new(error::BuildError::new( format!("Result field {}does not exist in macro body!", def.field), error::ErrorType::NoSuchSymbol, def.pos.clone(), ))); } } } other => { return Err(Box::new(error::BuildError::new( format!( "Expected List or Tuple as target but got {:?}", other.type_name() ), error::ErrorType::TypeFail, def.target.pos().clone(), ))); } } Ok(acc) } fn eval_functional_processing( &self, def: &MapFilterOpDef, typ: ProcessingOpType, scope: &Scope, ) -> Result, Box> { let maybe_target = self.eval_expr(&def.target, scope)?; let maybe_mac = self.eval_value(&Value::Symbol(def.mac.clone()), &self.scope.clone())?; let macdef = match maybe_mac.as_ref() { &Val::Macro(ref macdef) => macdef, _ => { return Err(Box::new(error::BuildError::new( format!("Expected macro but got {:?}", def.mac), error::ErrorType::TypeFail, def.pos.clone(), ))); } }; return match maybe_target.as_ref() { &Val::List(ref elems) => { self.eval_functional_list_processing(elems, macdef, &def.field, typ) } &Val::Tuple(ref fs) => { self.eval_functional_tuple_processing(fs, macdef, &def.field, typ) } other => Err(Box::new(error::BuildError::new( format!( "Expected List or Tuple as target but got {:?}", other.type_name() ), error::ErrorType::TypeFail, def.target.pos().clone(), ))), }; } fn record_assert_result(&mut self, msg: &str, is_success: bool) { if !is_success { let msg = format!("{} - NOT OK: {}\n", self.assert_collector.counter, msg); self.assert_collector.summary.push_str(&msg); self.assert_collector.failures.push_str(&msg); self.assert_collector.success = false; } else { let msg = format!("{} - OK: {}\n", self.assert_collector.counter, msg); self.assert_collector.summary.push_str(&msg); } self.assert_collector.counter += 1; } fn build_assert( &mut self, expr: &Expression, scope: &Scope, ) -> Result, Box> { if !self.validate_mode { // we are not in validate_mode then build_asserts are noops. return Ok(Rc::new(Val::Empty)); } let ok = match self.eval_expr(expr, scope) { Ok(v) => v, Err(e) => { // failure! let msg = format!("CompileError: {}\n", e); self.assert_collector.summary.push_str(&msg); self.assert_collector.failures.push_str(&msg); self.assert_collector.success = false; return Ok(Rc::new(Val::Empty)); } }; match ok.as_ref() { &Val::Tuple(ref fs) => { let ok_field = match find_in_fieldlist("ok", fs) { Some(ref val) => match val.as_ref() { &Val::Boolean(b) => b, _ => { let msg = format!( "TYPE FAIL - Expected Boolean field ok in tuple {}, line: {} column: {}", ok.as_ref(), expr.pos().line, expr.pos().column ); self.record_assert_result(&msg, false); return Ok(Rc::new(Val::Empty)); } }, None => { let msg = format!( "TYPE FAIL - Expected Boolean field ok in tuple {}, line: {} column: {}", ok.as_ref(), expr.pos().line, expr.pos().column ); self.record_assert_result(&msg, false); return Ok(Rc::new(Val::Empty)); } }; let desc = match find_in_fieldlist("desc", fs) { Some(ref val) => match val.as_ref() { Val::Str(ref s) => s.clone(), _ => { let msg = format!( "TYPE FAIL - Expected Boolean field desc in tuple {} line: {} column: {}", ok, expr.pos().line, expr.pos().column ); self.record_assert_result(&msg, false); return Ok(Rc::new(Val::Empty)); } }, None => { let msg = format!( "TYPE FAIL - Expected Boolean field desc in tuple {} line: {} column: {}\n", ok, expr.pos().line, expr.pos().column ); self.record_assert_result(&msg, false); return Ok(Rc::new(Val::Empty)); } }; self.record_assert_result(&desc, ok_field); } &Val::Empty | &Val::Boolean(_) | &Val::Env(_) | &Val::Float(_) | &Val::Int(_) | &Val::Str(_) | &Val::List(_) | &Val::Macro(_) | &Val::Module(_) => { // record an assertion type-failure result. let msg = format!( "TYPE FAIL - Expected tuple with ok and desc fields got {} at line: {} column: {}\n", ok, expr.pos().line, expr.pos().column ); self.record_assert_result(&msg, false); return Ok(Rc::new(Val::Empty)); } } Ok(ok) } fn get_file_as_string(&self, pos: &Position, path: &str) -> Result> { let normalized = match self.find_file(path, false) { Ok(p) => p, Err(e) => { return Err(Box::new(error::BuildError::new( format!("Error finding file {} {}", path, e), error::ErrorType::TypeFail, pos.clone(), ))) } }; let mut f = match File::open(&normalized) { Ok(f) => f, Err(e) => { return Err(Box::new(error::BuildError::new( format!("Error opening file {} {}", normalized.to_string_lossy(), e), error::ErrorType::TypeFail, pos.clone(), ))) } }; let mut contents = String::new(); f.read_to_string(&mut contents)?; Ok(contents) } pub fn eval_include(&self, def: &IncludeDef) -> Result, Box> { return if def.typ.fragment == "str" { Ok(Rc::new(Val::Str( self.get_file_as_string(&def.path.pos, &def.path.fragment)?, ))) } else { let maybe_importer = self.import_registry.get_importer(&def.typ.fragment); match maybe_importer { Some(importer) => { let file_contents = self.get_file_as_string(&def.path.pos, &def.path.fragment)?; let val = importer.import(file_contents.as_bytes())?; Ok(val) } None => Err(Box::new(error::BuildError::new( format!("Unknown include conversion type {}", def.typ.fragment), error::ErrorType::Unsupported, def.typ.pos.clone(), ))), } }; } fn eval_func_op(&self, def: &FuncOpDef, scope: &Scope) -> Result, Box> { match def { FuncOpDef::Filter(ref def) => { self.eval_functional_processing(def, ProcessingOpType::Filter, scope) } FuncOpDef::Map(ref def) => { self.eval_functional_processing(def, ProcessingOpType::Map, scope) } FuncOpDef::Reduce(ref def) => self.eval_reduce_op(def, scope), } } pub fn eval_range(&self, def: &RangeDef, scope: &Scope) -> Result, Box> { let start = self.eval_expr(&def.start, scope)?; let start = match start.as_ref() { &Val::Int(i) => i, _ => { return Err(Box::new(error::BuildError::new( format!( "Expected an integer for range start but got {}", start.type_name() ), error::ErrorType::TypeFail, def.start.pos().clone(), ))); } }; // See if there was a step. let step = match &def.step { Some(step) => { let step = self.eval_expr(&step, scope)?; match step.as_ref() { &Val::Int(i) => i, _ => { return Err(Box::new(error::BuildError::new( format!( "Expected an integer for range step but got {}", step.type_name() ), error::ErrorType::TypeFail, def.start.pos().clone(), ))); } } } None => 1, }; // Get the end. let end = self.eval_expr(&def.end, scope)?; let end = match end.as_ref() { &Val::Int(i) => i, _ => { return Err(Box::new(error::BuildError::new( format!( "Expected an integer for range start but got {}", end.type_name() ), error::ErrorType::TypeFail, def.start.pos().clone(), ))); } }; let vec = (start..end + 1) .step_by(step as usize) .map(|i| Rc::new(Val::Int(i))) .collect(); Ok(Rc::new(Val::List(vec))) } // Evals a single Expression in the context of a running Builder. // It does not mutate the builders collected state at all. pub fn eval_expr(&self, expr: &Expression, scope: &Scope) -> Result, Box> { match expr { &Expression::Simple(ref val) => self.eval_value(val, scope), &Expression::Binary(ref def) => self.eval_binary(def, scope), &Expression::Copy(ref def) => self.eval_copy(def, scope), &Expression::Range(ref def) => self.eval_range(def, scope), &Expression::Grouped(ref expr) => self.eval_expr(expr, scope), &Expression::Format(ref def) => self.eval_format(def, scope), &Expression::Call(ref def) => self.eval_call(def, scope), &Expression::Macro(ref def) => self.eval_macro_def(def), &Expression::Module(ref def) => self.eval_module_def(def, scope), &Expression::Select(ref def) => self.eval_select(def, scope), &Expression::FuncOp(ref def) => self.eval_func_op(def, scope), &Expression::Include(ref def) => self.eval_include(def), &Expression::Import(ref def) => self.eval_import(def), } } } #[cfg(test)] mod compile_test; #[cfg(test)] mod test;