mirror of
https://github.com/zaphar/ucg.git
synced 2025-07-22 18:19:54 -04:00
snapshot
This commit is contained in:
parent
ce928b7bd2
commit
ff3ae77ab2
@ -372,6 +372,7 @@ impl Shape {
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME(jwall): This needs to move wholesale into the Checker
|
||||
pub fn narrow(&self, right: &Shape, symbol_table: &mut BTreeMap<Rc<str>, Shape>) -> Self {
|
||||
match (self, right) {
|
||||
(Shape::Str(_), Shape::Str(_))
|
||||
|
@ -27,23 +27,30 @@ use super::{
|
||||
NarrowedShape, NotDef, Position, PositionedItem, SelectDef,
|
||||
};
|
||||
|
||||
// FIXME(jwall): This needs to just go away.
|
||||
/// Trait for shape derivation.
|
||||
pub trait DeriveShape {
|
||||
/// Derive a shape using a provided symbol table.
|
||||
fn derive_shape(&self, symbol_table: &mut BTreeMap<Rc<str>, Shape>) -> Shape;
|
||||
fn derive_shape(&self, symbol_table: &mut Vec<BTreeMap<Rc<str>, Shape>>) -> Shape;
|
||||
}
|
||||
|
||||
impl DeriveShape for FuncDef {
|
||||
fn derive_shape(&self, symbol_table: &mut BTreeMap<Rc<str>, Shape>) -> Shape {
|
||||
fn derive_shape(&self, symbol_table: &mut Vec<BTreeMap<Rc<str>, Shape>>) -> Shape {
|
||||
// FIXME(jwall): This is *all* wrong here.
|
||||
// 1. First set up our symbols.
|
||||
let mut sym_table = self
|
||||
.argdefs
|
||||
.iter()
|
||||
.map(|sym| (sym.val.clone(), dbg!(Shape::Hole(sym.clone()))))
|
||||
.collect::<BTreeMap<Rc<str>, Shape>>();
|
||||
sym_table.append(&mut symbol_table.clone());
|
||||
sym_table.append(
|
||||
&mut (symbol_table
|
||||
.last()
|
||||
.expect("We should definitely have a symbol_table here")
|
||||
.clone()),
|
||||
);
|
||||
// 2.Then determine the shapes of those symbols in our expression.
|
||||
let shape = self.fields.derive_shape(&mut sym_table);
|
||||
let shape = self.fields.derive_shape(&mut vec![sym_table]);
|
||||
// 3. Finally determine what the return shape can be.
|
||||
// only include the closed over shapes.
|
||||
let table = self
|
||||
@ -68,7 +75,7 @@ impl DeriveShape for FuncDef {
|
||||
}
|
||||
|
||||
impl DeriveShape for ModuleDef {
|
||||
fn derive_shape(&self, symbol_table: &mut BTreeMap<Rc<str>, Shape>) -> Shape {
|
||||
fn derive_shape(&self, symbol_table: &mut Vec<BTreeMap<Rc<str>, Shape>>) -> Shape {
|
||||
let sym_table: BTreeMap<Rc<str>, Shape> = self
|
||||
.arg_set
|
||||
.iter()
|
||||
@ -102,15 +109,12 @@ impl DeriveShape for ModuleDef {
|
||||
.clone(),
|
||||
));
|
||||
}
|
||||
Shape::Module(ModuleShape {
|
||||
items,
|
||||
ret,
|
||||
})
|
||||
Shape::Module(ModuleShape { items, ret })
|
||||
}
|
||||
}
|
||||
|
||||
impl DeriveShape for SelectDef {
|
||||
fn derive_shape(&self, symbol_table: &mut BTreeMap<Rc<str>, Shape>) -> Shape {
|
||||
fn derive_shape(&self, symbol_table: &mut Vec<BTreeMap<Rc<str>, Shape>>) -> Shape {
|
||||
let SelectDef {
|
||||
val: _,
|
||||
default: _,
|
||||
@ -123,12 +127,18 @@ impl DeriveShape for SelectDef {
|
||||
};
|
||||
for (_, expr) in tuple {
|
||||
let shape = expr.derive_shape(symbol_table);
|
||||
narrowed_shape.merge_in_shape(shape, symbol_table);
|
||||
narrowed_shape.merge_in_shape(
|
||||
shape,
|
||||
symbol_table
|
||||
.last_mut()
|
||||
.expect("We should definitely have a symbol table here"),
|
||||
);
|
||||
}
|
||||
Shape::Narrowed(narrowed_shape)
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME(jwall): This needs to move wholesale into the Checker
|
||||
fn derive_include_shape(
|
||||
IncludeDef {
|
||||
pos,
|
||||
@ -145,7 +155,8 @@ fn derive_include_shape(
|
||||
))
|
||||
}
|
||||
|
||||
fn derive_not_shape(def: &NotDef, symbol_table: &mut BTreeMap<Rc<str>, Shape>) -> Shape {
|
||||
// FIXME(jwall): This needs to move wholesale into the Checker
|
||||
fn derive_not_shape(def: &NotDef, symbol_table: &mut Vec<BTreeMap<Rc<str>, Shape>>) -> Shape {
|
||||
let shape = def.expr.as_ref().derive_shape(symbol_table);
|
||||
if let Shape::Boolean(_) = &shape {
|
||||
return Shape::Boolean(def.pos.clone());
|
||||
@ -167,103 +178,8 @@ fn derive_not_shape(def: &NotDef, symbol_table: &mut BTreeMap<Rc<str>, Shape>) -
|
||||
)
|
||||
}
|
||||
|
||||
fn derive_copy_shape(def: &CopyDef, symbol_table: &mut BTreeMap<Rc<str>, Shape>) -> Shape {
|
||||
let base_shape = def.selector.derive_shape(symbol_table);
|
||||
match &base_shape {
|
||||
// TODO(jwall): Should we allow a stack of these?
|
||||
Shape::TypeErr(_, _) => base_shape,
|
||||
Shape::Boolean(_)
|
||||
| Shape::Int(_)
|
||||
| Shape::Float(_)
|
||||
| Shape::Str(_)
|
||||
| Shape::List(_)
|
||||
| Shape::Func(_) => Shape::TypeErr(
|
||||
def.pos.clone(),
|
||||
format!("Not a Copyable type {}", base_shape.type_name()),
|
||||
),
|
||||
// This is an interesting one. Do we assume tuple or module here?
|
||||
Shape::Hole(pi) => Shape::Narrowed(NarrowedShape::new_with_pos(
|
||||
vec![
|
||||
Shape::Tuple(PositionedItem::new(vec![], pi.pos.clone())),
|
||||
Shape::Module(ModuleShape {
|
||||
items: vec![],
|
||||
ret: Box::new(Shape::Narrowed(NarrowedShape {
|
||||
pos: pi.pos.clone(),
|
||||
types: vec![],
|
||||
})),
|
||||
}),
|
||||
Shape::Import(ImportShape::Unresolved(pi.clone())),
|
||||
],
|
||||
pi.pos.clone(),
|
||||
)),
|
||||
Shape::Narrowed(potentials) => {
|
||||
// 1. Do the possible shapes include tuple, module, or import?
|
||||
let filtered = potentials
|
||||
.types
|
||||
.iter()
|
||||
.filter_map(|v| match v {
|
||||
Shape::Tuple(_) | Shape::Module(_) | Shape::Import(_) | Shape::Hole(_) => {
|
||||
Some(v.clone())
|
||||
}
|
||||
_ => None,
|
||||
})
|
||||
.collect::<Vec<Shape>>();
|
||||
if !filtered.is_empty() {
|
||||
// 1.1 Then return those and strip the others.
|
||||
Shape::Narrowed(NarrowedShape::new_with_pos(filtered, def.pos.clone()))
|
||||
} else {
|
||||
// 2. Else return a type error
|
||||
Shape::TypeErr(
|
||||
def.pos.clone(),
|
||||
format!("Not a Copyable type {}", base_shape.type_name()),
|
||||
)
|
||||
}
|
||||
}
|
||||
// These have understandable ways to resolve the type.
|
||||
Shape::Module(mdef) => {
|
||||
let arg_fields = def
|
||||
.fields
|
||||
.iter()
|
||||
.map(|(tok, expr)| (tok.fragment.clone(), expr.derive_shape(symbol_table)))
|
||||
.collect::<BTreeMap<Rc<str>, Shape>>();
|
||||
// 1. Do our copyable fields have the right names and shapes based on mdef.items.
|
||||
for (sym, shape) in mdef.items.iter() {
|
||||
if let Some(s) = arg_fields.get(&sym.val) {
|
||||
if let Shape::TypeErr(pos, msg) = shape.narrow(s, symbol_table) {
|
||||
return Shape::TypeErr(pos, msg);
|
||||
}
|
||||
}
|
||||
}
|
||||
// 1.1 If so then return the ret as our shape.
|
||||
mdef.ret.as_ref().clone()
|
||||
}
|
||||
Shape::Tuple(t_def) => {
|
||||
let mut base_fields = t_def.clone();
|
||||
base_fields.val.extend(
|
||||
def.fields
|
||||
.iter()
|
||||
.map(|(tok, expr)| (tok.into(), expr.derive_shape(symbol_table))),
|
||||
);
|
||||
Shape::Tuple(base_fields).with_pos(def.pos.clone())
|
||||
}
|
||||
Shape::Import(ImportShape::Unresolved(_)) => Shape::Narrowed(NarrowedShape::new_with_pos(
|
||||
vec![Shape::Tuple(PositionedItem::new(vec![], def.pos.clone()))],
|
||||
def.pos.clone(),
|
||||
)),
|
||||
Shape::Import(ImportShape::Resolved(_, tuple_shape)) => {
|
||||
let mut base_fields = tuple_shape.clone();
|
||||
base_fields.extend(
|
||||
def.fields
|
||||
.iter()
|
||||
.map(|(tok, expr)| (tok.into(), expr.derive_shape(symbol_table))),
|
||||
);
|
||||
Shape::Tuple(PositionedItem::new(base_fields, def.pos.clone()))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl DeriveShape for Expression {
|
||||
fn derive_shape(&self, symbol_table: &mut BTreeMap<Rc<str>, Shape>) -> Shape {
|
||||
fn derive_shape(&self, symbol_table: &mut Vec<BTreeMap<Rc<str>, Shape>>) -> Shape {
|
||||
match self {
|
||||
Expression::Simple(v) => v.derive_shape(symbol_table),
|
||||
Expression::Format(def) => Shape::Str(def.pos.clone()),
|
||||
@ -342,37 +258,10 @@ impl DeriveShape for Expression {
|
||||
}
|
||||
}
|
||||
|
||||
impl DeriveShape for Value {
|
||||
fn derive_shape(&self, symbol_table: &mut BTreeMap<Rc<str>, Shape>) -> Shape {
|
||||
match self {
|
||||
Value::Empty(p) => Shape::Narrowed(NarrowedShape::new_with_pos(vec![], p.clone())),
|
||||
Value::Boolean(p) => Shape::Boolean(p.pos.clone()),
|
||||
Value::Int(p) => Shape::Int(p.pos.clone()),
|
||||
Value::Float(p) => Shape::Float(p.pos.clone()),
|
||||
Value::Str(p) => Shape::Str(p.pos.clone()),
|
||||
Value::Symbol(p) => {
|
||||
if let Some(s) = symbol_table.get(&p.val) {
|
||||
s.clone()
|
||||
} else {
|
||||
Shape::Hole(p.clone())
|
||||
}
|
||||
}
|
||||
Value::Tuple(flds) => derive_field_list_shape(&flds.val, &flds.pos, symbol_table),
|
||||
Value::List(flds) => {
|
||||
let mut field_shapes = Vec::new();
|
||||
for f in &flds.elems {
|
||||
field_shapes.push(f.derive_shape(symbol_table));
|
||||
}
|
||||
Shape::List(NarrowedShape::new_with_pos(field_shapes, flds.pos.clone()))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn derive_field_list_shape(
|
||||
flds: &Vec<(super::Token, Expression)>,
|
||||
pos: &Position,
|
||||
symbol_table: &mut BTreeMap<Rc<str>, Shape>,
|
||||
symbol_table: &mut Vec<BTreeMap<Rc<str>, Shape>>,
|
||||
) -> Shape {
|
||||
let mut field_shapes = Vec::new();
|
||||
for &(ref tok, ref expr) in flds {
|
||||
@ -385,7 +274,7 @@ fn derive_field_list_shape(
|
||||
}
|
||||
|
||||
pub struct Checker {
|
||||
symbol_table: BTreeMap<Rc<str>, Shape>,
|
||||
symbol_table: Vec<BTreeMap<Rc<str>, Shape>>,
|
||||
err_stack: Vec<BuildError>,
|
||||
shape_stack: Vec<Shape>,
|
||||
}
|
||||
@ -401,17 +290,30 @@ pub struct Checker {
|
||||
impl Checker {
|
||||
pub fn new() -> Self {
|
||||
return Self {
|
||||
symbol_table: BTreeMap::new(),
|
||||
symbol_table: vec![BTreeMap::new()],
|
||||
err_stack: Vec::new(),
|
||||
shape_stack: Vec::new(),
|
||||
};
|
||||
}
|
||||
|
||||
pub fn with_symbol_table(mut self, symbol_table: BTreeMap<Rc<str>, Shape>) -> Self {
|
||||
self.symbol_table = symbol_table;
|
||||
self.symbol_table = vec![symbol_table];
|
||||
self
|
||||
}
|
||||
|
||||
pub fn lookup_symbol<'a>(&'a self, sym: Rc<str>) -> Option<&'a Shape> {
|
||||
for table in self.symbol_table.iter().rev() {
|
||||
if let Some(shape) = table.get(&sym) {
|
||||
return Some(shape);
|
||||
}
|
||||
}
|
||||
return None;
|
||||
}
|
||||
|
||||
pub fn insert_symbol(&mut self, sym: Rc<str>, shape: Shape) {
|
||||
self.symbol_table.last_mut().map(|t| t.insert(sym, shape));
|
||||
}
|
||||
|
||||
pub fn pop_shape(&mut self) -> Option<Shape> {
|
||||
self.shape_stack.pop()
|
||||
}
|
||||
@ -420,9 +322,108 @@ impl Checker {
|
||||
if let Some(err) = self.err_stack.pop() {
|
||||
Err(err)
|
||||
} else {
|
||||
Ok(self.symbol_table)
|
||||
Ok(self
|
||||
.symbol_table
|
||||
.pop()
|
||||
.expect("We should have a symbol table here somehwere"))
|
||||
}
|
||||
}
|
||||
|
||||
fn derive_copy_shape(&mut self, def: &CopyDef) -> Shape {
|
||||
let base_shape = def.selector.derive_shape(symbol_table);
|
||||
match &base_shape {
|
||||
// TODO(jwall): Should we allow a stack of these?
|
||||
Shape::TypeErr(_, _) => base_shape,
|
||||
Shape::Boolean(_)
|
||||
| Shape::Int(_)
|
||||
| Shape::Float(_)
|
||||
| Shape::Str(_)
|
||||
| Shape::List(_)
|
||||
| Shape::Func(_) => Shape::TypeErr(
|
||||
def.pos.clone(),
|
||||
format!("Not a Copyable type {}", base_shape.type_name()),
|
||||
),
|
||||
// This is an interesting one. Do we assume tuple or module here?
|
||||
Shape::Hole(pi) => Shape::Narrowed(NarrowedShape::new_with_pos(
|
||||
vec![
|
||||
Shape::Tuple(PositionedItem::new(vec![], pi.pos.clone())),
|
||||
Shape::Module(ModuleShape {
|
||||
items: vec![],
|
||||
ret: Box::new(Shape::Narrowed(NarrowedShape {
|
||||
pos: pi.pos.clone(),
|
||||
types: vec![],
|
||||
})),
|
||||
}),
|
||||
Shape::Import(ImportShape::Unresolved(pi.clone())),
|
||||
],
|
||||
pi.pos.clone(),
|
||||
)),
|
||||
Shape::Narrowed(potentials) => {
|
||||
// 1. Do the possible shapes include tuple, module, or import?
|
||||
let filtered = potentials
|
||||
.types
|
||||
.iter()
|
||||
.filter_map(|v| match v {
|
||||
Shape::Tuple(_) | Shape::Module(_) | Shape::Import(_) | Shape::Hole(_) => {
|
||||
Some(v.clone())
|
||||
}
|
||||
_ => None,
|
||||
})
|
||||
.collect::<Vec<Shape>>();
|
||||
if !filtered.is_empty() {
|
||||
// 1.1 Then return those and strip the others.
|
||||
Shape::Narrowed(NarrowedShape::new_with_pos(filtered, def.pos.clone()))
|
||||
} else {
|
||||
// 2. Else return a type error
|
||||
Shape::TypeErr(
|
||||
def.pos.clone(),
|
||||
format!("Not a Copyable type {}", base_shape.type_name()),
|
||||
)
|
||||
}
|
||||
}
|
||||
// These have understandable ways to resolve the type.
|
||||
Shape::Module(mdef) => {
|
||||
let arg_fields = def
|
||||
.fields
|
||||
.iter()
|
||||
.map(|(tok, expr)| (tok.fragment.clone(), expr.derive_shape(symbol_table)))
|
||||
.collect::<BTreeMap<Rc<str>, Shape>>();
|
||||
// 1. Do our copyable fields have the right names and shapes based on mdef.items.
|
||||
for (sym, shape) in mdef.items.iter() {
|
||||
if let Some(s) = arg_fields.get(&sym.val) {
|
||||
if let Shape::TypeErr(pos, msg) = shape.narrow(s, symbol_table) {
|
||||
return Shape::TypeErr(pos, msg);
|
||||
}
|
||||
}
|
||||
}
|
||||
// 1.1 If so then return the ret as our shape.
|
||||
mdef.ret.as_ref().clone()
|
||||
}
|
||||
Shape::Tuple(t_def) => {
|
||||
let mut base_fields = t_def.clone();
|
||||
base_fields.val.extend(
|
||||
def.fields
|
||||
.iter()
|
||||
.map(|(tok, expr)| (tok.into(), expr.derive_shape(symbol_table))),
|
||||
);
|
||||
Shape::Tuple(base_fields).with_pos(def.pos.clone())
|
||||
}
|
||||
Shape::Import(ImportShape::Unresolved(_)) => Shape::Narrowed(NarrowedShape::new_with_pos(
|
||||
vec![Shape::Tuple(PositionedItem::new(vec![], def.pos.clone()))],
|
||||
def.pos.clone(),
|
||||
)),
|
||||
Shape::Import(ImportShape::Resolved(_, tuple_shape)) => {
|
||||
let mut base_fields = tuple_shape.clone();
|
||||
base_fields.extend(
|
||||
def.fields
|
||||
.iter()
|
||||
.map(|(tok, expr)| (tok.into(), expr.derive_shape(symbol_table))),
|
||||
);
|
||||
Shape::Tuple(PositionedItem::new(base_fields, def.pos.clone()))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
impl Visitor for Checker {
|
||||
@ -451,28 +452,31 @@ impl Visitor for Checker {
|
||||
}
|
||||
|
||||
fn visit_value(&mut self, val: &mut Value) {
|
||||
match val {
|
||||
Value::Empty(p) => self
|
||||
.shape_stack
|
||||
.push(Shape::Narrowed(NarrowedShape::new_with_pos(
|
||||
vec![],
|
||||
p.clone(),
|
||||
))),
|
||||
Value::Boolean(p) => self.shape_stack.push(Shape::Boolean(p.pos.clone())),
|
||||
Value::Int(p) => self.shape_stack.push(Shape::Int(p.pos.clone())),
|
||||
Value::Float(p) => self.shape_stack.push(Shape::Float(p.pos.clone())),
|
||||
Value::Str(p) => self.shape_stack.push(Shape::Str(p.pos.clone())),
|
||||
// Symbols in a shape are placeholders. They allow a form of genericity
|
||||
// in the shape. They can be any type and are only refined down.
|
||||
// by their presence in an expression.
|
||||
Value::Symbol(p) => self.shape_stack.push(Shape::Hole(p.clone())),
|
||||
Value::List(_) => {
|
||||
// noop
|
||||
let shape = match val {
|
||||
Value::Empty(p) => Shape::Narrowed(NarrowedShape::new_with_pos(vec![], p.clone())),
|
||||
Value::Boolean(p) => Shape::Boolean(p.pos.clone()),
|
||||
Value::Int(p) => Shape::Int(p.pos.clone()),
|
||||
Value::Float(p) => Shape::Float(p.pos.clone()),
|
||||
Value::Str(p) => Shape::Str(p.pos.clone()),
|
||||
Value::Symbol(p) => {
|
||||
if let Some(s) = self.lookup_symbol(p.val.clone()) {
|
||||
s.clone()
|
||||
} else {
|
||||
Shape::Hole(p.clone())
|
||||
}
|
||||
}
|
||||
Value::Tuple(_) => {
|
||||
// noop
|
||||
// FIXME(jwall): This needs to be handled differently
|
||||
Value::Tuple(flds) => derive_field_list_shape(&flds.val, &flds.pos, symbol_table),
|
||||
// FIXME(jwall): This needs to be handled differently
|
||||
Value::List(flds) => {
|
||||
let mut field_shapes = Vec::new();
|
||||
for f in &flds.elems {
|
||||
field_shapes.push(f.derive_shape(&mut self.symbol_table));
|
||||
}
|
||||
Shape::List(NarrowedShape::new_with_pos(field_shapes, flds.pos.clone()))
|
||||
}
|
||||
}
|
||||
};
|
||||
self.shape_stack.push(shape)
|
||||
}
|
||||
|
||||
fn leave_value(&mut self, _val: &Value) {
|
||||
@ -507,7 +511,11 @@ impl Visitor for Checker {
|
||||
pos.clone(),
|
||||
));
|
||||
} else {
|
||||
self.symbol_table.insert(name.clone(), shape.clone());
|
||||
// FIXME(jwall): Should this insert a new symbol_tableif it doesn't exist?
|
||||
self.symbol_table
|
||||
.last_mut()
|
||||
.map(|t| t.insert(name.clone(), shape.clone()))
|
||||
.expect("We should already have a symbol table here");
|
||||
self.shape_stack.push(shape);
|
||||
}
|
||||
}
|
||||
|
@ -41,7 +41,8 @@ macro_rules! assert_type_success {
|
||||
let mut expr = parse($e.into(), None).unwrap();
|
||||
checker.walk_statement_list(expr.iter_mut().collect());
|
||||
let maybe_shape = checker.pop_shape();
|
||||
assert_eq!(checker.symbol_table[$expected_sym], $shape);
|
||||
// FIXME?(jwall): We should probably just use an symbol table lookup api here.
|
||||
assert_eq!(checker.symbol_table.last().map(|t| t[$expected_sym]), Some($shape));
|
||||
let result = checker.result();
|
||||
assert!(result.is_ok(), "We expect this to typecheck successfully.");
|
||||
assert!(maybe_shape.is_some(), "We got a shape out of it");
|
||||
@ -154,7 +155,7 @@ macro_rules! infer_symbol_test {
|
||||
let symbol = $sym_list[idx].0.clone();
|
||||
checker
|
||||
.symbol_table
|
||||
.insert(symbol.clone(), shape.clone());
|
||||
.last_mut(|t| t.insert(symbol.clone(), shape.clone()));
|
||||
}
|
||||
let tokens = tokenize(expr, None).unwrap();
|
||||
let token_iter = SliceIter::new(&tokens);
|
||||
|
Loading…
x
Reference in New Issue
Block a user