Basic Evaluation Logic for the Builder.

This commit is contained in:
Jeremy Wall 2017-06-10 11:09:24 -05:00
parent 72d03e21dd
commit 8a5c121f26
2 changed files with 1000 additions and 465 deletions

View File

@ -1,23 +1,30 @@
use parse::{parse, Statement, Expression, Value, FieldList};
use parse::{parse, Statement, Expression, Value, FieldList, SelectorList};
use std::error::Error;
use std::collections::HashMap;
use std::convert::From;
use std::collections::{HashMap, VecDeque};
use std::collections::hash_map::Entry;
use std::rc::Rc;
use std::fmt;
use std::fmt::{Display,Formatter};
quick_error! {
#[derive(Debug,PartialEq)]
pub enum BuildError {
TypeFail(msg: String) {
description("Eval Error")
display("Eval Error {}", msg)
description("Type Error")
display("Type Error {}", msg)
}
Unsupported(msg: String) {
description("Unsupported Operation")
display("Unsupported Operation {}", msg)
}
NoSuchSymbol(msg: String) {
description("Eval Error")
display("Eval Error {}", msg)
display("No Such Variable {}", msg)
}
TODO(msg: String) {
description("Eval Error")
display("Eval Error {}", msg)
description("TODO Error")
display("TODO Error {}", msg)
}
}
}
@ -26,26 +33,75 @@ quick_error! {
type BuildResult = Result<(), Box<Error>>;
/// Val is the type of a value for a field in a Tuple.
#[derive(PartialEq,Debug)]
#[derive(PartialEq,Debug,Clone)]
pub enum Val<'a> {
Int(i64),
Float(f64),
String(&'a str),
Symbol(&'a str),
Tuple(FieldList<'a>),
String(String),
Tuple(Vec<(&'a str, Rc<Val<'a>>)>),
}
impl<'a> From<Value<'a>> for Val<'a> {
fn from(v: Value<'a>) -> Self {
match v {
Value::Int(i) => Val::Int(i),
Value::Float(f) => Val::Float(f),
Value::String(s) => Val::String(s),
Value::Symbol(s) => Val::Symbol(s),
Value::Tuple(ref fields) => {
Val::Tuple(Vec::new())
impl<'a> Val<'a> {
pub fn type_name(&self) -> String {
match self {
&Val::Int(_) => "Integer".to_string(),
&Val::Float(_) => "Float".to_string(),
&Val::String(_) => "String".to_string(),
&Val::Tuple(_) => "Tuple".to_string(),
}
}
pub fn type_equal(&self, target: &Self) -> bool {
match self {
&Val::Int(_) => if let &Val::Int(_) = target { true } else { false },
&Val::Float(_) => if let &Val::Float(_) = target { true } else { false },
&Val::String(_) => if let &Val::String(_) = target { true } else { false },
&Val::Tuple(_) => if let &Val::Tuple(_) = target { true } else { false },
}
}
pub fn get_fields(&self) -> Option<&Vec<(&'a str, Rc<Val<'a>>)>> {
if let &Val::Tuple(ref fs) = self {
Some(fs)
} else {
None
}
}
pub fn is_int(&self) -> bool {
if let &Val::Int(_) = self {
return true;
}
return false;
}
pub fn is_float(&self) -> bool {
if let &Val::Float(_) = self {
return true;
}
return false;
}
pub fn is_string(&self) -> bool {
if let &Val::String(_) = self {
return true;
}
return false;
}
pub fn is_tuple(&self) -> bool {
if let &Val::Tuple(_) = self {
return true;
}
return false;
}
}
impl<'a> Display for Val<'a> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
// TODO(jwall): These should render better than this.
write!(f, "{}", self.type_name())
}
}
@ -55,7 +111,7 @@ pub struct Tuple<'a>(HashMap<&'a str, Val<'a>>);
/// Builder parses one or more statements into a out Tuple.
pub struct Builder<'a> {
/// env is the set of key value pairs provided at build time.
/// env is the immutable set of key value pairs provided at build time.
env: HashMap<&'a str, &'a str>,
/// assets are other parsed files from import statements. They
/// are keyed by the normalized import path. This acts as a cache
@ -63,28 +119,66 @@ pub struct Builder<'a> {
/// multiple times.
assets: HashMap<&'a str, Tuple<'a>>,
/// out is our built output.
out: Tuple<'a>,
out: HashMap<&'a str, Rc<Val<'a>>>,
}
macro_rules! eval_binary_expr {
($case:pat, $rside:ident, $result:expr, $msg:expr) => {
match $rside.as_ref() {
$case => {
return Ok(Rc::new($result))
},
val => {
return Err(Box::new(
BuildError::TypeFail(
format!("Expected {} but got {}", $msg, val))))
}
}
}
}
impl<'a> Builder<'a> {
/// new_builder constructs Builder with initialized fields ready to parse.
pub fn new_builder() -> Self {
fn from(&self, v: Value<'a>) -> Result<Rc<Val>, Box<Error>> {
match v {
Value::Int(i) => Ok(Rc::new(Val::Int(i))),
Value::Float(f) => Ok(Rc::new(Val::Float(f))),
Value::String(s) => Ok(Rc::new(Val::String(s.to_string()))),
Value::Symbol(s) => {
self.lookup_sym(s).ok_or(Box::new(
BuildError::NoSuchSymbol(s.to_string())))
},
Value::Tuple(fields) => {
// TODO(jwall): We need to resolve the expressions here.
// TODO(jwall): Don't forget we want a stable order for the fields
// in a tuple to make Vec comparisons easier later on.
Err(Box::new(
BuildError::TODO(
"Value::Tuple to Val::Tuple is not yet impolemented.".to_string())))
},
Value::Selector(selector_list) => {
self.lookup_selector(selector_list)
},
}
}
pub fn new() -> Self {
Builder {
env: HashMap::new(),
assets: HashMap::new(),
out: Tuple(HashMap::new()),
out: HashMap::new(),
}
}
pub fn build_dir(&self, name: &str) -> BuildResult {
pub fn build_dir(&mut self, name: &str) -> BuildResult {
Ok(())
}
pub fn build_file(&self, name: &str) -> BuildResult {
pub fn build_file(&mut self, name: &str) -> BuildResult {
Ok(())
}
pub fn build(&self, ast: Vec<Statement>) -> BuildResult {
pub fn build(&mut self, ast: Vec<Statement>) -> BuildResult {
// TODO(jwall):
for stmt in ast.iter() {
self.build_stmt(stmt);
@ -92,45 +186,223 @@ impl<'a> Builder<'a> {
Ok(())
}
fn eval_expr(&'a self, expr: Expression<'a>) -> Result<Val, Box<Error>> {
fn lookup_sym(&'a self, sym: &str) -> Option<Rc<Val>> {
if self.out.contains_key(sym) {
Some(self.out[sym].clone())
} else {
None
}
}
fn find_in_fieldlist(target: &str, fs: &Vec<(&str, Rc<Val<'a>>)>) -> Option<Rc<Val<'a>>> {
for (key, val) in fs.iter().cloned() {
if target == key {
return Some(val.clone())
}
}
return None
}
fn lookup_selector(&'a self, sl: SelectorList) -> Result<Rc<Val>, Box<Error>> {
let len = sl.len();
if len > 0 {
println!("Looking up symbol {}", sl[0]);
if let Some(v) = self.lookup_sym(sl[0]) {
let mut it = sl.iter().skip(1).peekable();
if it.peek().is_none() {
return Ok(v.clone());
}
if let &Val::Tuple(ref fs) = v.as_ref() {
let mut stack = VecDeque::new();
stack.push_back(v.clone());
loop {
let vref = stack.pop_front().unwrap();
if it.peek().is_none() {
return Ok(vref.clone());
}
// This unwrap is safe because we already checked for
// None above.
let k = it.next().unwrap();
if !vref.is_tuple() {
return Err(Box::new(BuildError::NoSuchSymbol(
format!("Attempted to dereference non-tuple {:?} at field {}.", sl, k))));
}
// This unwrap is safe because we already checked for
// Tuple above.
let fs = vref.get_fields().unwrap();
if let Some(vv) = Self::find_in_fieldlist(k, fs) {
if vv.is_tuple() {
stack.push_back(vv.clone());
continue;
}
if it.peek().is_some() {
return Err(Box::new(BuildError::NoSuchSymbol(
format!("Unable to match selector path {:?}", sl))));
} else {
return Ok(vv.clone());
}
} else {
// TODO(jwall): A better error for this would be nice.
return Err(Box::new(BuildError::NoSuchSymbol(
format!("Unable to match selector path {:?}", sl))));
}
};
}
return Err(Box::new(BuildError::TypeFail(
format!("{} is not a Tuple", sl[0]))));
}
return Err(Box::new(BuildError::NoSuchSymbol(
format!("Unable to find Symbol {}", sl[0]))));
}
return Err(Box::new(BuildError::NoSuchSymbol(
"Attempted to lookup an empty selector".to_string())));
}
// eval_expr evals a single Expression in the context of a running Builder.
// It does not mutate the builders collected state at all.
pub fn eval_expr(&'a self, expr: Expression<'a>) -> Result<Rc<Val>, Box<Error>> {
match expr {
Expression::Simple(val) => {
Ok(Val::from(val))
self.from(val)
},
Expression::Add(v, expr) => {
Err(Box::new(
BuildError::TODO(
"TODO(jwall): Unimplemented Expression".to_string())))
let expr_result = try!(self.eval_expr(*expr));
let v = try!(self.from(*v));
match *v {
Val::Int(i) => {
eval_binary_expr!(&Val::Int(ii), expr_result,
Val::Int(i + ii), "Integer")
},
Val::Float(f) => {
eval_binary_expr!(&Val::Float(ff), expr_result,
Val::Float(f + ff), "Float")
},
Val::String(ref s) => {
match expr_result.as_ref() {
&Val::String(ref ss) => {
return Ok(Rc::new(
Val::String([s.to_string(), ss.clone()].concat())))
},
val => {
return Err(Box::new(
BuildError::TypeFail(
format!("Expected String but got {:?}", val))))
}
}
},
ref expr => {
return Err(Box::new(
BuildError::Unsupported(
format!("{} does not support the '+' operation", expr.type_name()))))
}
}
},
Expression::Sub(v, expr) => {
Err(Box::new(
BuildError::TODO(
"TODO(jwall): Unimplemented Expression".to_string())))
let expr_result = try!(self.eval_expr(*expr));
let v = try!(self.from(*v));
match *v {
Val::Int(i) => {
eval_binary_expr!(&Val::Int(ii), expr_result,
Val::Int(i - ii), "Integer")
},
Val::Float(f) => {
eval_binary_expr!(&Val::Float(ff), expr_result,
Val::Float(f - ff), "Float")
},
ref expr => {
return Err(Box::new(
BuildError::Unsupported(
format!("{} does not support the '-' operation", expr.type_name()))))
}
}
},
Expression::Mul(v, expr) => {
Err(Box::new(
BuildError::TODO(
"TODO(jwall): Unimplemented Expression".to_string())))
let expr_result = try!(self.eval_expr(*expr));
let v = try!(self.from(*v));
match *v {
Val::Int(i) => {
eval_binary_expr!(&Val::Int(ii), expr_result,
Val::Int(i * ii), "Integer")
},
Val::Float(f) => {
eval_binary_expr!(&Val::Float(ff), expr_result,
Val::Float(f * ff), "Float")
},
ref expr => {
return Err(Box::new(
BuildError::Unsupported(
format!("{} does not support the '*' operation", expr.type_name()))))
}
}
},
Expression::Div(v, expr) => {
Err(Box::new(
BuildError::TODO(
"TODO(jwall): Unimplemented Expression".to_string())))
let expr_result = try!(self.eval_expr(*expr));
let v = try!(self.from(*v));
match *v {
Val::Int(i) => {
eval_binary_expr!(&Val::Int(ii), expr_result,
Val::Int(i / ii), "Integer")
},
Expression::Copy(sel, fields) => {
Err(Box::new(
BuildError::TODO(
"TODO(jwall): Unimplemented Expression".to_string())))
Val::Float(f) => {
eval_binary_expr!(&Val::Float(ff), expr_result,
Val::Float(f / ff), "Float")
},
Expression::Selector(sel) => {
ref expr => {
return Err(Box::new(
BuildError::Unsupported(
format!("{} does not support the '*' operation", expr.type_name()))))
}
}
},
Expression::Copy(sel, mut fields) => {
let v = try!(self.lookup_selector(sel));
if let Val::Tuple(ref src_fields) = *v {
let mut m = HashMap::<&str, Rc<Val>>::new();
// loop through fields and build up a hasmap
for &(ref key, ref val) in src_fields.iter() {
if let Entry::Vacant(v) = m.entry(*key) {
v.insert(val.clone());
} else {
// TODO(jwall): Is this an error?
return Err(Box::new(
BuildError::TypeFail(
format!("Duplicate field: {} in tuple", *key))));
}
}
for (key, val) in fields.drain(0..) {
let expr_result = try!(self.eval_expr(val));
match m.entry(key) {
Entry::Vacant(mut v) => {
v.insert(expr_result);
},
Entry::Occupied(mut v) => {
// Ensure that the new type matches the old type.
// TODO(jwall): This copy is ugly but I don't think it's possible
// to both compare and replace this at the same time.
let src_val = v.get().clone();
if src_val.type_equal(&expr_result) {
v.insert(expr_result);
} else {
return Err(Box::new(
BuildError::TypeFail(
format!("Expected type {} for field {} but got {}",
src_val.type_name(), key, expr_result.type_name()))));
}
},
};
}
let mut new_fields: Vec<(&str, Rc<Val>)> = m.drain().collect();
// We want a stable order for the fields to make comparing tuples
// easier in later code. So we sort by the field name before constructing a new tuple.
new_fields.sort_by(|a, b| a.0.cmp(b.0));
return Ok(Rc::new(Val::Tuple(new_fields)));
}
Err(Box::new(
BuildError::TODO(
"TODO(jwall): Unimplemented Expression".to_string())))
BuildError::TypeFail(
format!("Expected Tuple got {}", v))))
},
Expression::Grouped(expr) => {
Err(Box::new(
BuildError::TODO(
"TODO(jwall): Unimplemented Expression".to_string())))
return self.eval_expr(*expr);
},
Expression::Call{lambda: sel, arglist: args} => {
Err(Box::new(
@ -165,3 +437,246 @@ impl<'a> Builder<'a> {
Ok(())
}
}
#[cfg(test)]
mod test {
use super::{Builder,Val};
use parse::{Expression, Value};
use std::rc::Rc;
fn test_expr_to_val(mut cases: Vec<(Expression,Val)>, b: Builder) {
for tpl in cases.drain(0..) {
assert_eq!(b.eval_expr(tpl.0).unwrap(), Rc::new(tpl.1));
}
}
#[test]
fn test_eval_div_expr() {
let mut b = Builder::new();
test_expr_to_val(vec![
(Expression::Div(Box::new(Value::Int(2)), Box::new(Expression::Simple(Value::Int(2)))),
Val::Int(1)),
(Expression::Div(Box::new(Value::Float(2.0)), Box::new(Expression::Simple(Value::Float(2.0)))),
Val::Float(1.0)),
], b);
}
#[test]
#[should_panic(expected = "Expected Float")]
fn test_eval_div_expr_fail() {
let mut b = Builder::new();
test_expr_to_val(vec![
(Expression::Div(Box::new(Value::Float(2.0)), Box::new(Expression::Simple(Value::Int(2)))),
Val::Float(1.0)),
], b);
}
#[test]
fn test_eval_mul_expr() {
let mut b = Builder::new();
test_expr_to_val(vec![
(Expression::Mul(Box::new(Value::Int(2)), Box::new(Expression::Simple(Value::Int(2)))),
Val::Int(4)),
(Expression::Mul(Box::new(Value::Float(2.0)), Box::new(Expression::Simple(Value::Float(2.0)))),
Val::Float(4.0)),
], b);
}
#[test]
#[should_panic(expected = "Expected Float")]
fn test_eval_mul_expr_fail() {
let mut b = Builder::new();
test_expr_to_val(vec![
(Expression::Mul(Box::new(Value::Float(2.0)), Box::new(Expression::Simple(Value::Int(2)))),
Val::Float(1.0)),
], b);
}
#[test]
fn test_eval_subtract_expr() {
let mut b = Builder::new();
test_expr_to_val(vec![
(Expression::Sub(Box::new(Value::Int(2)), Box::new(Expression::Simple(Value::Int(1)))),
Val::Int(1)),
(Expression::Sub(Box::new(Value::Float(2.0)), Box::new(Expression::Simple(Value::Float(1.0)))),
Val::Float(1.0)),
], b);
}
#[test]
#[should_panic(expected = "Expected Float")]
fn test_eval_subtract_expr_fail() {
let mut b = Builder::new();
test_expr_to_val(vec![
(Expression::Sub(Box::new(Value::Float(2.0)), Box::new(Expression::Simple(Value::Int(2)))),
Val::Float(1.0)),
], b);
}
#[test]
fn test_eval_add_expr() {
let mut b = Builder::new();
test_expr_to_val(vec![
(Expression::Add(Box::new(Value::Int(1)), Box::new(Expression::Simple(Value::Int(1)))),
Val::Int(2)),
(Expression::Add(Box::new(Value::Float(1.0)), Box::new(Expression::Simple(Value::Float(1.0)))),
Val::Float(2.0)),
(Expression::Add(Box::new(Value::String("foo")), Box::new(Expression::Simple(Value::String("bar")))),
Val::String("foobar".to_string())),
], b);
}
#[test]
#[should_panic(expected = "Expected Float")]
fn test_eval_add_expr_fail() {
let mut b = Builder::new();
test_expr_to_val(vec![
(Expression::Add(Box::new(Value::Float(2.0)), Box::new(Expression::Simple(Value::Int(2)))),
Val::Float(1.0)),
], b);
}
#[test]
fn test_eval_simple_expr() {
test_expr_to_val(vec![
(Expression::Simple(Value::Int(1)), Val::Int(1)),
(Expression::Simple(Value::Float(2.0)), Val::Float(2.0)),
(Expression::Simple(Value::String("foo")), Val::String("foo".to_string())),
], Builder::new());
}
#[test]
fn test_eval_simple_lookup_expr() {
let mut b = Builder::new();
b.out.entry("var1").or_insert(Rc::new(Val::Int(1)));
test_expr_to_val(vec![
(Expression::Simple(Value::Symbol("var1")), Val::Int(1)),
], b);
}
#[test]
fn test_eval_simple_lookup_error() {
let mut b = Builder::new();
b.out.entry("var1").or_insert(Rc::new(Val::Int(1)));
assert!(b.eval_expr(Expression::Simple(Value::Symbol("var"))).is_err());
}
#[test]
fn test_eval_selector_expr() {
// TODO(jwall): Tests for this expression.
let mut b = Builder::new();
b.out.entry("var1").or_insert(Rc::new(Val::Tuple(vec![
("lvl1", Rc::new(Val::Tuple(
vec![
("lvl2", Rc::new(Val::Int(3))),
]
))),
])));
b.out.entry("var2").or_insert(Rc::new(Val::Int(2)));
b.out.entry("var3").or_insert(Rc::new(Val::Tuple(vec![
("lvl1", Rc::new(Val::Int(4)))
])));
test_expr_to_val(vec![
(Expression::Simple(Value::Selector(vec!["var1"])), Val::Tuple(
vec![
("lvl1", Rc::new(Val::Tuple(
vec![
("lvl2", Rc::new(Val::Int(3))),
]
))),
]
)),
(Expression::Simple(Value::Selector(vec!["var1","lvl1"])), Val::Tuple(
vec![
("lvl2", Rc::new(Val::Int(3))),
]
)),
(Expression::Simple(Value::Selector(vec!["var1","lvl1", "lvl2"])), Val::Int(3)),
(Expression::Simple(Value::Selector(vec!["var2"])), Val::Int(2)),
(Expression::Simple(Value::Selector(vec!["var3", "lvl1"])), Val::Int(4)),
], b);
}
#[test]
#[should_panic(expected = "Unable to find Symbol tpl1")]
fn test_expr_copy_no_such_tuple() {
let mut b = Builder::new();
test_expr_to_val(vec![
(Expression::Copy(vec!["tpl1"], Vec::new()),
Val::Tuple(Vec::new())),
], b);
}
#[test]
#[should_panic(expected = "Expected Tuple got Integer")]
fn test_expr_copy_not_a_tuple() {
let mut b = Builder::new();
b.out.entry("tpl1").or_insert(Rc::new(Val::Int(1)));
test_expr_to_val(vec![
(Expression::Copy(vec!["tpl1"], Vec::new()),
Val::Tuple(Vec::new())),
], b);
}
#[test]
#[should_panic(expected = "Expected type Integer for field fld1 but got String")]
fn test_expr_copy_field_type_error() {
let mut b = Builder::new();
b.out.entry("tpl1").or_insert(Rc::new(Val::Tuple(vec![
("fld1", Rc::new(Val::Int(1))),
])));
test_expr_to_val(vec![
(Expression::Copy(vec!["tpl1"],
vec![("fld1", Expression::Simple(Value::String("2")))]),
Val::Tuple(
vec![
("fld1", Rc::new(Val::String("2".to_string()))),
],
)),
], b);
}
// TODO(jwall): What about the duplicate field error?
#[test]
fn test_expr_copy() {
// TODO(jwall): Tests for this expression.
let mut b = Builder::new();
b.out.entry("tpl1").or_insert(Rc::new(Val::Tuple(vec![
("fld1", Rc::new(Val::Int(1))),
])));
test_expr_to_val(vec![
(Expression::Copy(vec!["tpl1"],
vec![("fld2", Expression::Simple(Value::String("2")))]),
// Add a new field to the copy
Val::Tuple(
// NOTE(jwall): The order of these is important in order to ensure
// that the compare assertion is correct. The ordering has no
// semantics though so at some point we should probably be less restrictive.
vec![
("fld1", Rc::new(Val::Int(1))),
("fld2", Rc::new(Val::String("2".to_string()))),
],
)),
// Overwrite a field in the copy
(Expression::Copy(vec!["tpl1"],
vec![
("fld1", Expression::Simple(Value::Int(3))),
("fld2", Expression::Simple(Value::String("2"))),
]),
Val::Tuple(
vec![
("fld1", Rc::new(Val::Int(3))),
("fld2", Rc::new(Val::String("2".to_string()))),
],
)),
// The source tuple is still unmodified.
(Expression::Simple(Value::Selector(vec!["tpl1"])),
Val::Tuple(
vec![
("fld1", Rc::new(Val::Int(1))),
],
)),
], b);
}
}

View File

@ -8,12 +8,11 @@ quick_error! {
}
}
use std::collections::HashMap;
use std::str::FromStr;
use std::str::from_utf8;
use std::error::Error;
use nom::{alpha, is_alphanumeric, digit, IResult};
use nom::{alpha, is_alphanumeric, digit};
type ParseResult<O> = Result<O, Box<Error>>;
@ -21,17 +20,33 @@ pub type FieldList<'a> = Vec<(&'a str, Expression<'a>)>; // str is expected to b
pub type SelectorList<'a> = Vec<&'a str>; // str is expected to always be a symbol.
/// Value represents a Value in the UCG parsed AST.
#[derive(Debug,PartialEq)]
#[derive(Debug,PartialEq,Clone)]
pub enum Value<'a> {
// Constant Values
Int(i64),
Float(f64),
String(&'a str),
Symbol(&'a str),
// Complex Values
Tuple(FieldList<'a>),
Selector(SelectorList<'a>),
}
impl<'a> Value<'a> {
pub fn type_name(&self) -> String {
match self {
&Value::Int(_) => "Integer".to_string(),
&Value::Float(_) => "Float".to_string(),
&Value::String(_) => "String".to_string(),
&Value::Symbol(_) => "Symbol".to_string(),
&Value::Tuple(_) => "Tuple".to_string(),
&Value::Selector(_) => "Selector".to_string(),
}
}
}
/// Expression encodes an expression. Expressions compute a value from operands.
#[derive(Debug,PartialEq)]
#[derive(Debug,PartialEq,Clone)]
pub enum Expression<'a> {
// Base Expression
Simple(Value<'a>),
@ -44,7 +59,6 @@ pub enum Expression<'a> {
// Complex Expressions
Copy(SelectorList<'a>, FieldList<'a>),
Selector(SelectorList<'a>),
Grouped(Box<Expression<'a>>),
Call {
@ -83,7 +97,6 @@ pub enum Statement<'a> {
// sentinels and punctuation
named!(doublequote, tag!("\""));
named!(singlequote, tag!("'"));
named!(comma, tag!(","));
named!(lbrace, tag!("{"));
named!(rbrace, tag!("}"));
@ -95,7 +108,6 @@ named!(minus, tag!("-"));
named!(mul, tag!("*"));
named!(div, tag!("/"));
named!(equal, tag!("="));
named!(slashes, tag!("//"));
named!(semicolon, tag!(";"));
named!(fatcomma, tag!("=>"));
@ -194,20 +206,6 @@ named!(number<Value>,
)
);
#[test]
fn test_number_parsing() {
assert!(number(&b"."[..]).is_err() );
assert!(number(&b". "[..]).is_err() );
assert_eq!(number(&b"1.0"[..]),
IResult::Done(&b""[..], Value::Float(1.0)) );
assert_eq!(number(&b"1."[..]),
IResult::Done(&b""[..], Value::Float(1.0)) );
assert_eq!(number(&b"1"[..]),
IResult::Done(&b""[..], Value::Int(1)) );
assert_eq!(number(&b".1"[..]),
IResult::Done(&b""[..], Value::Float(0.1)) );
}
named!(value<Value>, alt!(number | quoted_value | symbol | tuple));
named!(
@ -221,21 +219,6 @@ named!(
)
);
#[test]
fn test_field_value_parse() {
assert!(field_value(&b"foo"[..]).is_incomplete() );
assert!(field_value(&b"foo ="[..]).is_incomplete() );
assert_eq!(field_value(&b"foo = 1"[..]),
IResult::Done(&b""[..], ("foo", Expression::Simple(Value::Int(1)))) );
assert_eq!(field_value(&b"foo = \"1\""[..]),
IResult::Done(&b""[..], ("foo", Expression::Simple(Value::String("1")))) );
assert_eq!(field_value(&b"foo = bar"[..]),
IResult::Done(&b""[..], ("foo", Expression::Simple(Value::Symbol("bar")))) );
assert_eq!(field_value(&b"foo = bar "[..]),
IResult::Done(&b""[..], ("foo", Expression::Simple(Value::Symbol("bar")))) );
}
// Helper function to make the return types work for down below.
fn vec_to_tuple<'a>(v: FieldList<'a>) -> ParseResult<Value<'a>> {
Ok(Value::Tuple(v))
@ -255,43 +238,6 @@ named!(
)
);
#[test]
fn test_tuple_parse() {
assert!(tuple(&b"{"[..]).is_incomplete() );
assert!(tuple(&b"{ foo"[..]).is_incomplete() );
assert!(tuple(&b"{ foo ="[..]).is_incomplete() );
assert!(tuple(&b"{ foo = 1"[..]).is_incomplete() );
assert!(tuple(&b"{ foo = 1,"[..]).is_err() );
assert!(tuple(&b"{ foo = 1, bar ="[..]).is_err() );
assert_eq!(tuple(&b"{ }"[..]),
IResult::Done(&b""[..],
Value::Tuple(
vec![])));
assert_eq!(tuple(&b"{ foo = 1 }"[..]),
IResult::Done(&b""[..],
Value::Tuple(
vec![
("foo", Expression::Simple(Value::Int(1)))
])));
assert_eq!(tuple(&b"{ foo = 1, bar = \"1\" }"[..]),
IResult::Done(&b""[..],
Value::Tuple(
vec![
("foo", Expression::Simple(Value::Int(1))),
("bar", Expression::Simple(Value::String("1")))
])));
assert_eq!(tuple(&b"{ foo = 1, bar = {} }"[..]),
IResult::Done(&b""[..],
Value::Tuple(
vec![
("foo", Expression::Simple(Value::Int(1))),
("bar", Expression::Simple(Value::Tuple(Vec::new())))
])));
}
// keywords
named!(let_word, tag!("let"));
named!(select_word, tag!("select"));
@ -385,32 +331,6 @@ named!(grouped_expression<Expression>,
)
);
#[test]
fn test_grouped_expression_parse() {
assert!(grouped_expression(&b"foo"[..]).is_err() );
assert!(grouped_expression(&b"(foo"[..]).is_incomplete() );
assert_eq!(grouped_expression(&b"(foo)"[..]),
IResult::Done(&b""[..],
Expression::Grouped(
Box::new(
Expression::Simple(
Value::Symbol("foo")))))
);
assert_eq!(grouped_expression(&b"(1 + 1)"[..]),
IResult::Done(&b""[..],
Expression::Grouped(
Box::new(
Expression::Add(
Box::new(Value::Int(1)),
Box::new(Expression::Simple(
Value::Int(1)))
)
)
)
)
);
}
named!(selector_list<SelectorList>, separated_nonempty_list!(dot, field));
fn tuple_to_copy<'a>(t: (SelectorList<'a>, FieldList<'a>)) -> ParseResult<Expression<'a>> {
@ -430,25 +350,6 @@ named!(copy_expression<Expression>,
)
);
#[test]
fn test_copy_parse() {
assert!(copy_expression(&b"{}"[..]).is_err() );
assert!(copy_expression(&b"foo"[..]).is_incomplete() );
assert!(copy_expression(&b"foo{"[..]).is_incomplete() );
assert_eq!(copy_expression(&b"foo{}"[..]),
IResult::Done(&b""[..],
Expression::Copy(vec!["foo"],
Vec::new())
)
);
assert_eq!(copy_expression(&b"foo{bar=1}"[..]),
IResult::Done(&b""[..],
Expression::Copy(vec!["foo"],
vec![("bar", Expression::Simple(Value::Int(1)))])
)
);
}
fn tuple_to_lambda<'a>(t: (Vec<Value<'a>>, Value<'a>)) -> ParseResult<Expression<'a>> {
match t.1 {
Value::Tuple(v) => {
@ -466,17 +367,6 @@ fn tuple_to_lambda<'a>(t: (Vec<Value<'a>>, Value<'a>)) -> ParseResult<Expression
named!(arglist<Vec<Value> >, separated_list!(ws!(comma), symbol));
#[test]
fn test_arglist_parse() {
assert!(arglist(&b"arg"[..]).is_done());
assert!(arglist(&b"arg1, arg2"[..]).is_done());
assert_eq!(arglist(&b"arg1, arg2"[..]), IResult::Done(&b""[..],
vec![
Value::Symbol("arg1"),
Value::Symbol("arg2")
]));
}
named!(lambda_expression<Expression>,
map_res!(
do_parse!(
@ -492,33 +382,6 @@ named!(lambda_expression<Expression>,
)
);
#[test]
fn test_lambda_expression_parsing() {
assert!(lambda_expression(&b"foo"[..]).is_err() );
assert!(lambda_expression(&b"lambda \"foo\""[..]).is_err() );
assert!(lambda_expression(&b"lambda 1"[..]).is_err() );
assert!(lambda_expression(&b"lambda"[..]).is_incomplete() );
assert!(lambda_expression(&b"lambda ("[..]).is_incomplete() );
assert!(lambda_expression(&b"lambda (arg"[..]).is_incomplete() );
assert!(lambda_expression(&b"lambda (arg, arg2"[..]).is_incomplete() );
assert!(lambda_expression(&b"lambda (arg1, arg2) =>"[..]).is_incomplete() );
assert!(lambda_expression(&b"lambda (arg1, arg2) => {"[..]).is_incomplete() );
assert!(lambda_expression(&b"lambda (arg1, arg2) => { foo"[..]).is_incomplete() );
assert!(lambda_expression(&b"lambda (arg1, arg2) => { foo ="[..]).is_incomplete() );
assert_eq!(lambda_expression(&b"lambda (arg1, arg2) => {foo=1,bar=2}"[..]),
IResult::Done(&b""[..],
Expression::Lambda{
arglist: vec![Value::Symbol("arg1"),
Value::Symbol("arg2")],
tuple: vec![("foo", Expression::Simple(Value::Int(1))),
("bar", Expression::Simple(Value::Int(2)))
]
}
)
);
}
fn tuple_to_select<'a>(t: (Expression<'a>, Expression<'a>, Value<'a>))
-> ParseResult<Expression<'a>> {
match t.2 {
@ -536,8 +399,6 @@ fn tuple_to_select<'a>(t: (Expression<'a>, Expression<'a>, Value<'a>))
}
}
named!(select_selector<Value>, alt!(symbol | quoted_value | number));
named!(select_expression<Expression>,
map_res!(
terminated!(do_parse!(
@ -551,28 +412,8 @@ named!(select_expression<Expression>,
)
);
#[test]
fn test_select_parse() {
assert!(select_expression(&b"select"[..]).is_incomplete());
assert!(select_expression(&b"select foo"[..]).is_incomplete());
assert!(select_expression(&b"select foo, 1"[..]).is_incomplete());
assert!(select_expression(&b"select foo, 1, {"[..]).is_incomplete());
assert_eq!(select_expression(&b"select foo, 1, { foo = 2 };"[..]),
IResult::Done(&b""[..],
Expression::Select{
val: Box::new(Expression::Simple(Value::Symbol("foo"))),
default: Box::new(Expression::Simple(Value::Int(1))),
tuple: vec![
("foo", Expression::Simple(Value::Int(2)))
]
}
)
);
}
fn tuple_to_call<'a>(t: (Expression<'a>, Vec<Expression<'a>>)) -> ParseResult<Expression<'a>> {
if let Expression::Selector(sl) = t.0 {
fn tuple_to_call<'a>(t: (Value<'a>, Vec<Expression<'a>>)) -> ParseResult<Expression<'a>> {
if let Value::Selector(sl) = t.0 {
Ok(Expression::Call {
lambda: sl,
arglist: t.1,
@ -582,21 +423,21 @@ fn tuple_to_call<'a>(t: (Expression<'a>, Vec<Expression<'a>>)) -> ParseResult<Ex
}
}
fn vec_to_selector_expression<'a>(v: SelectorList<'a>) -> ParseResult<Expression<'a>> {
Ok(Expression::Selector(v))
fn vec_to_selector_value<'a>(v: SelectorList<'a>) -> ParseResult<Value<'a>> {
Ok(Value::Selector(v))
}
named!(selector_expression<Expression>,
named!(selector_value<Value>,
map_res!(
ws!(selector_list),
vec_to_selector_expression
vec_to_selector_value
)
);
named!(call_expression<Expression>,
map_res!(
do_parse!(
lambda: selector_expression >>
lambda: selector_value >>
lparen >>
args: ws!(separated_list!(ws!(comma), expression)) >>
rparen >>
@ -606,39 +447,6 @@ named!(call_expression<Expression>,
)
);
#[test]
fn test_call_parse() {
assert!(call_expression(&b"foo"[..]).is_incomplete() );
assert!(call_expression(&b"foo ("[..]).is_incomplete() );
assert!(call_expression(&b"foo (1"[..]).is_incomplete() );
assert!(call_expression(&b"foo (1,"[..]).is_err() );
assert!(call_expression(&b"foo (1,2"[..]).is_incomplete() );
assert_eq!(call_expression(&b"foo (1, \"foo\")"[..]),
IResult::Done(&b""[..],
Expression::Call{
lambda: vec!["foo"],
arglist: vec![
Expression::Simple(Value::Int(1)),
Expression::Simple(Value::String("foo")),
],
}
)
);
assert_eq!(call_expression(&b"foo.bar (1, \"foo\")"[..]),
IResult::Done(&b""[..],
Expression::Call{
lambda: vec!["foo","bar"],
arglist: vec![
Expression::Simple(Value::Int(1)),
Expression::Simple(Value::String("foo")),
],
}
)
);
}
// NOTE(jwall): HERE THERE BE DRAGONS. The order for these matters
// alot. We need to process alternatives in order of decreasing
// specificity. Unfortunately this means we are required to go in a
@ -664,6 +472,183 @@ named!(expression<Expression>,
)
);
fn expression_to_statement(v: Expression) -> ParseResult<Statement> {
Ok(Statement::Expression(v))
}
named!(expression_statement<Statement>,
map_res!(
terminated!(ws!(expression), semicolon),
expression_to_statement
)
);
fn tuple_to_let<'a>(t: (&'a str, Expression<'a>)) -> ParseResult<Statement<'a>> {
Ok(Statement::Let {
name: t.0,
value: t.1,
})
}
named!(let_statement<Statement>,
map_res!(
terminated!(do_parse!(
let_word >>
name: ws!(field) >>
equal >>
val: ws!(expression) >>
(name, val)
), semicolon),
tuple_to_let
)
);
fn tuple_to_import<'a>(t: (&'a str, &'a str)) -> ParseResult<Statement<'a>> {
Ok(Statement::Import {
name: t.0,
path: t.1,
})
}
named!(import_statement<Statement>,
map_res!(
terminated!(do_parse!(
import_word >>
path: ws!(quoted) >>
as_word >>
name: ws!(field) >>
(name, path)
), semicolon),
tuple_to_import
)
);
named!(statement<Statement>,
alt_complete!(
import_statement |
let_statement |
expression_statement
)
);
named!(pub parse<Vec<Statement> >, many1!(ws!(statement)));
// TODO(jwall): Full Statement parsing tests.
#[cfg(test)]
mod test {
use std::str::from_utf8;
use super::{Statement, Expression, Value};
use super::{number, parse, field_value, tuple, grouped_expression, copy_expression};
use super::{arglist, lambda_expression, select_expression, call_expression, expression};
use super::{expression_statement, let_statement, import_statement, statement};
use nom::IResult;
#[test]
fn test_statement_parse() {
assert_eq!(statement(&b"import \"foo\" as foo;"[..]),
IResult::Done(&b""[..],
Statement::Import{
path: "foo",
name: "foo"
}
)
);
assert!(statement(&b"import foo"[..]).is_err() );
assert_eq!(statement(&b"let foo = 1.0 ;"[..]),
IResult::Done(&b""[..],
Statement::Let{name: "foo",
value: Expression::Simple(Value::Float(1.0))}));
assert_eq!(statement(&b"1.0;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::Float(1.0)))));
}
#[test]
fn test_import_parse() {
assert!(import_statement(&b"import"[..]).is_incomplete());
assert!(import_statement(&b"import \"foo\""[..]).is_incomplete());
assert!(import_statement(&b"import \"foo\" as"[..]).is_incomplete());
assert!(import_statement(&b"import \"foo\" as foo"[..]).is_incomplete());
assert_eq!(import_statement(&b"import \"foo\" as foo;"[..]),
IResult::Done(&b""[..],
Statement::Import{
path: "foo",
name: "foo"
}
)
);
}
#[test]
fn test_let_statement_parse() {
assert!(let_statement(&b"foo"[..]).is_err() );
assert!(let_statement(&b"let \"foo\""[..]).is_err() );
assert!(let_statement(&b"let 1"[..]).is_err() );
assert!(let_statement(&b"let"[..]).is_incomplete() );
assert!(let_statement(&b"let foo"[..]).is_incomplete() );
assert!(let_statement(&b"let foo ="[..]).is_incomplete() );
assert!(let_statement(&b"let foo = "[..]).is_incomplete() );
assert!(let_statement(&b"let foo = 1"[..]).is_incomplete() );
assert_eq!(let_statement(&b"let foo = 1.0 ;"[..]),
IResult::Done(&b""[..],
Statement::Let{name: "foo",
value: Expression::Simple(Value::Float(1.0))}));
assert_eq!(let_statement(&b"let foo= 1.0;"[..]),
IResult::Done(&b""[..],
Statement::Let{name: "foo",
value: Expression::Simple(Value::Float(1.0))}));
assert_eq!(let_statement(&b"let foo =1.0;"[..]),
IResult::Done(&b""[..],
Statement::Let{name: "foo",
value: Expression::Simple(Value::Float(1.0))}));
}
#[test]
fn test_expression_statement_parse() {
assert!(expression_statement(&b"foo"[..]).is_incomplete() );
assert_eq!(expression_statement(&b"1.0;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::Float(1.0)))));
assert_eq!(expression_statement(&b"1.0 ;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::Float(1.0)))));
assert_eq!(expression_statement(&b" 1.0;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::Float(1.0)))));
assert_eq!(expression_statement(&b"foo;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::Symbol("foo")))));
assert_eq!(expression_statement(&b"foo ;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::Symbol("foo")))));
assert_eq!(expression_statement(&b" foo;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::Symbol("foo")))));
assert_eq!(expression_statement(&b"\"foo\";"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::String("foo")))));
assert_eq!(expression_statement(&b"\"foo\" ;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::String("foo")))));
assert_eq!(expression_statement(&b" \"foo\";"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::String("foo")))));
}
#[test]
fn test_expression_parse() {
assert_eq!(expression(&b"1"[..]),
@ -750,173 +735,207 @@ fn test_expression_parse() {
);
}
fn expression_to_statement(v: Expression) -> ParseResult<Statement> {
Ok(Statement::Expression(v))
}
#[test]
fn test_call_parse() {
assert!(call_expression(&b"foo"[..]).is_incomplete() );
assert!(call_expression(&b"foo ("[..]).is_incomplete() );
assert!(call_expression(&b"foo (1"[..]).is_incomplete() );
assert!(call_expression(&b"foo (1,"[..]).is_err() );
assert!(call_expression(&b"foo (1,2"[..]).is_incomplete() );
named!(expression_statement<Statement>,
map_res!(
terminated!(ws!(expression), semicolon),
expression_to_statement
assert_eq!(call_expression(&b"foo (1, \"foo\")"[..]),
IResult::Done(&b""[..],
Expression::Call{
lambda: vec!["foo"],
arglist: vec![
Expression::Simple(Value::Int(1)),
Expression::Simple(Value::String("foo")),
],
}
)
);
assert_eq!(call_expression(&b"foo.bar (1, \"foo\")"[..]),
IResult::Done(&b""[..],
Expression::Call{
lambda: vec!["foo","bar"],
arglist: vec![
Expression::Simple(Value::Int(1)),
Expression::Simple(Value::String("foo")),
],
}
)
);
}
#[test]
fn test_expression_statement_parse() {
assert!(expression_statement(&b"foo"[..]).is_incomplete() );
assert_eq!(expression_statement(&b"1.0;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::Float(1.0)))));
assert_eq!(expression_statement(&b"1.0 ;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::Float(1.0)))));
assert_eq!(expression_statement(&b" 1.0;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::Float(1.0)))));
assert_eq!(expression_statement(&b"foo;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::Symbol("foo")))));
assert_eq!(expression_statement(&b"foo ;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::Symbol("foo")))));
assert_eq!(expression_statement(&b" foo;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::Symbol("foo")))));
assert_eq!(expression_statement(&b"\"foo\";"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::String("foo")))));
assert_eq!(expression_statement(&b"\"foo\" ;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::String("foo")))));
assert_eq!(expression_statement(&b" \"foo\";"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::String("foo")))));
}
fn test_select_parse() {
assert!(select_expression(&b"select"[..]).is_incomplete());
assert!(select_expression(&b"select foo"[..]).is_incomplete());
assert!(select_expression(&b"select foo, 1"[..]).is_incomplete());
assert!(select_expression(&b"select foo, 1, {"[..]).is_incomplete());
fn tuple_to_let<'a>(t: (&'a str, Expression<'a>)) -> ParseResult<Statement<'a>> {
Ok(Statement::Let {
name: t.0,
value: t.1,
})
assert_eq!(select_expression(&b"select foo, 1, { foo = 2 };"[..]),
IResult::Done(&b""[..],
Expression::Select{
val: Box::new(Expression::Simple(Value::Symbol("foo"))),
default: Box::new(Expression::Simple(Value::Int(1))),
tuple: vec![
("foo", Expression::Simple(Value::Int(2)))
]
}
named!(let_statement<Statement>,
map_res!(
terminated!(do_parse!(
let_word >>
name: ws!(field) >>
equal >>
val: ws!(expression) >>
(name, val)
), semicolon),
tuple_to_let
)
);
}
#[test]
fn test_let_statement_parse() {
assert!(let_statement(&b"foo"[..]).is_err() );
assert!(let_statement(&b"let \"foo\""[..]).is_err() );
assert!(let_statement(&b"let 1"[..]).is_err() );
assert!(let_statement(&b"let"[..]).is_incomplete() );
assert!(let_statement(&b"let foo"[..]).is_incomplete() );
assert!(let_statement(&b"let foo ="[..]).is_incomplete() );
assert!(let_statement(&b"let foo = "[..]).is_incomplete() );
assert!(let_statement(&b"let foo = 1"[..]).is_incomplete() );
fn test_lambda_expression_parsing() {
assert!(lambda_expression(&b"foo"[..]).is_err() );
assert!(lambda_expression(&b"lambda \"foo\""[..]).is_err() );
assert!(lambda_expression(&b"lambda 1"[..]).is_err() );
assert!(lambda_expression(&b"lambda"[..]).is_incomplete() );
assert!(lambda_expression(&b"lambda ("[..]).is_incomplete() );
assert!(lambda_expression(&b"lambda (arg"[..]).is_incomplete() );
assert!(lambda_expression(&b"lambda (arg, arg2"[..]).is_incomplete() );
assert!(lambda_expression(&b"lambda (arg1, arg2) =>"[..]).is_incomplete() );
assert!(lambda_expression(&b"lambda (arg1, arg2) => {"[..]).is_incomplete() );
assert!(lambda_expression(&b"lambda (arg1, arg2) => { foo"[..]).is_incomplete() );
assert!(lambda_expression(&b"lambda (arg1, arg2) => { foo ="[..]).is_incomplete() );
assert_eq!(let_statement(&b"let foo = 1.0 ;"[..]),
assert_eq!(lambda_expression(&b"lambda (arg1, arg2) => {foo=1,bar=2}"[..]),
IResult::Done(&b""[..],
Statement::Let{name: "foo",
value: Expression::Simple(Value::Float(1.0))}));
assert_eq!(let_statement(&b"let foo= 1.0;"[..]),
IResult::Done(&b""[..],
Statement::Let{name: "foo",
value: Expression::Simple(Value::Float(1.0))}));
assert_eq!(let_statement(&b"let foo =1.0;"[..]),
IResult::Done(&b""[..],
Statement::Let{name: "foo",
value: Expression::Simple(Value::Float(1.0))}));
Expression::Lambda{
arglist: vec![Value::Symbol("arg1"),
Value::Symbol("arg2")],
tuple: vec![("foo", Expression::Simple(Value::Int(1))),
("bar", Expression::Simple(Value::Int(2)))
]
}
fn tuple_to_import<'a>(t: (&'a str, &'a str)) -> ParseResult<Statement<'a>> {
Ok(Statement::Import {
name: t.0,
path: t.1,
})
}
named!(import_statement<Statement>,
map_res!(
terminated!(do_parse!(
import_word >>
path: ws!(quoted) >>
as_word >>
name: ws!(field) >>
(name, path)
), semicolon),
tuple_to_import
)
);
}
#[test]
fn test_import_parse() {
assert!(import_statement(&b"import"[..]).is_incomplete());
assert!(import_statement(&b"import \"foo\""[..]).is_incomplete());
assert!(import_statement(&b"import \"foo\" as"[..]).is_incomplete());
assert!(import_statement(&b"import \"foo\" as foo"[..]).is_incomplete());
assert_eq!(import_statement(&b"import \"foo\" as foo;"[..]),
IResult::Done(&b""[..],
Statement::Import{
path: "foo",
name: "foo"
fn test_arglist_parse() {
assert!(arglist(&b"arg"[..]).is_done());
assert!(arglist(&b"arg1, arg2"[..]).is_done());
assert_eq!(arglist(&b"arg1, arg2"[..]), IResult::Done(&b""[..],
vec![
Value::Symbol("arg1"),
Value::Symbol("arg2")
]));
}
)
);
}
named!(statement<Statement>,
alt_complete!(
import_statement |
let_statement |
expression_statement
)
);
#[test]
fn test_statement_parse() {
assert_eq!(statement(&b"import \"foo\" as foo;"[..]),
fn test_copy_parse() {
assert!(copy_expression(&b"{}"[..]).is_err() );
assert!(copy_expression(&b"foo"[..]).is_incomplete() );
assert!(copy_expression(&b"foo{"[..]).is_incomplete() );
assert_eq!(copy_expression(&b"foo{}"[..]),
IResult::Done(&b""[..],
Statement::Import{
path: "foo",
name: "foo"
}
Expression::Copy(vec!["foo"],
Vec::new())
)
);
assert!(statement(&b"import foo"[..]).is_err() );
assert_eq!(statement(&b"let foo = 1.0 ;"[..]),
assert_eq!(copy_expression(&b"foo{bar=1}"[..]),
IResult::Done(&b""[..],
Statement::Let{name: "foo",
value: Expression::Simple(Value::Float(1.0))}));
assert_eq!(statement(&b"1.0;"[..]),
IResult::Done(&b""[..],
Statement::Expression(
Expression::Simple(Value::Float(1.0)))));
Expression::Copy(vec!["foo"],
vec![("bar", Expression::Simple(Value::Int(1)))])
)
);
}
named!(pub parse<Vec<Statement> >, many1!(ws!(statement)));
#[test]
fn test_grouped_expression_parse() {
assert!(grouped_expression(&b"foo"[..]).is_err() );
assert!(grouped_expression(&b"(foo"[..]).is_incomplete() );
assert_eq!(grouped_expression(&b"(foo)"[..]),
IResult::Done(&b""[..],
Expression::Grouped(
Box::new(
Expression::Simple(
Value::Symbol("foo")))))
);
assert_eq!(grouped_expression(&b"(1 + 1)"[..]),
IResult::Done(&b""[..],
Expression::Grouped(
Box::new(
Expression::Add(
Box::new(Value::Int(1)),
Box::new(Expression::Simple(
Value::Int(1)))
)
)
)
)
);
}
// TODO(jwall): Full Statement parsing tests.
#[test]
fn test_tuple_parse() {
assert!(tuple(&b"{"[..]).is_incomplete() );
assert!(tuple(&b"{ foo"[..]).is_incomplete() );
assert!(tuple(&b"{ foo ="[..]).is_incomplete() );
assert!(tuple(&b"{ foo = 1"[..]).is_incomplete() );
assert!(tuple(&b"{ foo = 1,"[..]).is_err() );
assert!(tuple(&b"{ foo = 1, bar ="[..]).is_err() );
assert_eq!(tuple(&b"{ }"[..]),
IResult::Done(&b""[..],
Value::Tuple(
vec![])));
assert_eq!(tuple(&b"{ foo = 1 }"[..]),
IResult::Done(&b""[..],
Value::Tuple(
vec![
("foo", Expression::Simple(Value::Int(1)))
])));
assert_eq!(tuple(&b"{ foo = 1, bar = \"1\" }"[..]),
IResult::Done(&b""[..],
Value::Tuple(
vec![
("foo", Expression::Simple(Value::Int(1))),
("bar", Expression::Simple(Value::String("1")))
])));
assert_eq!(tuple(&b"{ foo = 1, bar = {} }"[..]),
IResult::Done(&b""[..],
Value::Tuple(
vec![
("foo", Expression::Simple(Value::Int(1))),
("bar", Expression::Simple(Value::Tuple(Vec::new())))
])));
}
#[test]
fn test_field_value_parse() {
assert!(field_value(&b"foo"[..]).is_incomplete() );
assert!(field_value(&b"foo ="[..]).is_incomplete() );
assert_eq!(field_value(&b"foo = 1"[..]),
IResult::Done(&b""[..], ("foo", Expression::Simple(Value::Int(1)))) );
assert_eq!(field_value(&b"foo = \"1\""[..]),
IResult::Done(&b""[..], ("foo", Expression::Simple(Value::String("1")))) );
assert_eq!(field_value(&b"foo = bar"[..]),
IResult::Done(&b""[..], ("foo", Expression::Simple(Value::Symbol("bar")))) );
assert_eq!(field_value(&b"foo = bar "[..]),
IResult::Done(&b""[..], ("foo", Expression::Simple(Value::Symbol("bar")))) );
}
#[test]
fn test_number_parsing() {
assert!(number(&b"."[..]).is_err() );
assert!(number(&b". "[..]).is_err() );
assert_eq!(number(&b"1.0"[..]),
IResult::Done(&b""[..], Value::Float(1.0)) );
assert_eq!(number(&b"1."[..]),
IResult::Done(&b""[..], Value::Float(1.0)) );
assert_eq!(number(&b"1"[..]),
IResult::Done(&b""[..], Value::Int(1)) );
assert_eq!(number(&b".1"[..]),
IResult::Done(&b""[..], Value::Float(0.1)) );
}
#[test]
fn test_parse() {
@ -948,3 +967,4 @@ fn test_parse() {
)
]);
}
}