// Copyright 2022 Jeremy Wall (Jeremy@marzhilsltudios.com) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use std::collections::{hash_map::DefaultHasher, BTreeMap, BTreeSet}; use proptest::prelude::*; use crate::prelude::*; type TestDag = Merkle, Node>, DefaultHasher>; fn simple_edge_strategy( nodes_count: usize, ) -> impl Strategy, BTreeSet)> { prop::collection::vec(".*", 4..nodes_count).prop_flat_map(|payloads| { let nodes_len = payloads.len(); ( // our total list of nodes. Just(payloads), // our list of roots. prop::collection::btree_set(1..nodes_len, 1..(nodes_len / 2)), ) }) } fn complex_dag_strategy( nodes_count: usize, depth: usize, branch: usize, ) -> impl Strategy { prop::collection::vec(".*", depth..nodes_count).prop_flat_map(move |payloads| { let nodes_len = payloads.len(); let mut dag = TestDag::new(); // partition the payloads into depth pieces let mut id_stack: Vec> = Vec::new(); for chunk in payloads.chunks(nodes_len / depth) { // loop through the partions adding each partions nodes to the dag. let dep_sets: Vec>> = if id_stack.is_empty() { vec![BTreeSet::new()] } else { let mut dep_sets = Vec::new(); for id_chunk in id_stack.chunks(branch) { let id_set = id_chunk.iter().fold(BTreeSet::new(), |mut acc, item| { acc.insert(item.clone()); acc }); dep_sets.push(id_set); } dep_sets }; let dep_set_len = dep_sets.len(); for (idx, p) in chunk.iter().enumerate() { let dep_idx = idx % dep_set_len; let dep_set = dep_sets[dep_idx].clone(); id_stack.push(dag.add_node(p.clone(), dep_set).unwrap().clone()); } } Just(dag) }) } proptest! { #[test] fn test_dag_add_node_properties((nodes, parent_idxs) in simple_edge_strategy(100)) { // TODO implement the tests now let mut dag = TestDag::new(); let parent_count = parent_idxs.len(); let mut dependents = BTreeMap::new(); let mut node_set = BTreeSet::new(); for (idx, n) in nodes.iter().cloned().enumerate() { if !parent_idxs.contains(&idx) { let node_id = dag.add_node(n.as_bytes(), BTreeSet::new()).unwrap(); node_set.insert(node_id.clone()); let parent = idx % parent_count; if dependents.contains_key(&parent) { dependents.get_mut(&parent).map(|v: &mut BTreeSet>| v.insert(node_id)); } else { dependents.insert(parent, BTreeSet::from([node_id])); } } } for (pidx, dep_ids) in dependents { let node_id = dag.add_node(nodes[pidx].clone(), dep_ids).unwrap(); node_set.insert(node_id.clone()); } assert!(dag.get_roots().len() <= parent_count); assert!(dag.get_nodes().len() == node_set.len()); } } proptest! { #[test] fn test_complex_dag_node_properties(dag in complex_dag_strategy(100, 10, 3)) { // TODO(jwall): We can assert much more about the Merkle if we get more clever in what we return. let nodes = dag.get_nodes(); assert!(nodes.len() <= 100); let roots = dag.get_roots(); assert!(roots.len() < dag.get_nodes().len()); for node_id in nodes.keys() { let mut is_descendant = false; if roots.contains(node_id) { continue; } for root in roots.iter() { if let NodeCompare::After = dag.compare(root, node_id).unwrap() { // success is_descendant = true; } } assert!(is_descendant); } // Check that every root node is uncomparable. for left_root in roots.iter() { for right_root in roots.iter() { if left_root != right_root { assert_eq!(dag.compare(left_root, right_root).unwrap(), NodeCompare::Uncomparable); } } } } }