Reorganize some modules

This commit is contained in:
Jeremy Wall 2022-08-05 14:29:07 -04:00
parent ff4af672b1
commit 016f6d10af
7 changed files with 241 additions and 303 deletions

3
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,3 @@
{
"rust-analyzer.checkOnSave.features": "all"
}

180
src/dag.rs Normal file
View File

@ -0,0 +1,180 @@
// Copyright 2022 Jeremy Wall (Jeremy@marzhilsltudios.com)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::{BTreeMap, BTreeSet};
use crate::hash::{ByteEncoder, HashWriter};
use crate::node::Node;
/// Node comparison values. In a given Merkle DAG a Node can come `After`, `Before`, be `Equivalent`, or `Uncomparable`.
/// If the two nodes have the same id they are eqivalent. If two nodes are not part of the same sub graph within the DAG
/// then they are Uncomparable. If one node is an ancestor of another DAG then that node comes before the other. If the
/// reverse is true then that node comes after the other.
#[derive(PartialEq, Debug)]
pub enum NodeCompare {
After,
Before,
Equivalent,
Uncomparable,
}
#[derive(Debug)]
pub enum EdgeError {
NoSuchDependents,
}
/// A Merkle-DAG implementation. This is a modification on the standard Merkle Tree data structure
/// but instead of a tree it is a DAG and as a result can have multiple roots. A merkle-dag specifies
/// a partial ordering on all the nodes and utilizes the api to ensure that this ordering is
/// preserved during construction.
///
/// The merkle dag consists of a set of pointers to the current known roots as well as the total set
/// of nodes in the dag. Node payload items must be of a single type and implement the `ByteEncoder`
/// trait.
///
/// A merkle DAG instance is tied to a specific implementation of the HashWriter interface to ensure
/// that all hash identifiers are of the same hash algorithm.
#[derive(Clone, Debug)]
pub struct Merkle<N, HW, const HASH_LEN: usize>
where
N: ByteEncoder,
HW: HashWriter<HASH_LEN>,
{
roots: BTreeSet<[u8; HASH_LEN]>,
nodes: BTreeMap<[u8; HASH_LEN], Node<N, HW, HASH_LEN>>,
}
impl<N, HW, const HASH_LEN: usize> Merkle<N, HW, HASH_LEN>
where
N: ByteEncoder,
HW: HashWriter<HASH_LEN>,
{
/// Construct a new empty DAG. The empty DAG is also the default for a DAG.
pub fn new() -> Self {
Self::default()
}
/// Add a new payload with a required set of dependency_ids. This method will construct a new node
/// and add it to the DAG with the given payload item and dependency id set. It is idempotent for any
/// given set of inputs.
///
/// One result of not constructing/adding nodes in this way is that we ensure that we always satisfy
/// the implementation rule in the merkel-crdt's whitepaper.
pub fn add_node<'a>(
&'a mut self,
item: N,
dependency_ids: BTreeSet<[u8; HASH_LEN]>,
) -> Result<[u8; HASH_LEN], EdgeError> {
let node = Node::<N, HW, HASH_LEN>::new(item, dependency_ids.clone());
let id = node.id().clone();
if self.nodes.contains_key(&id) {
// We've already added this node so there is nothing left to do.
return Ok(id);
}
for dep_id in dependency_ids.iter() {
if !self.nodes.contains_key(dep_id) {
return Err(EdgeError::NoSuchDependents);
}
// If any of our dependencies is in the roots pointer list then
// it is time to remove it from there.
if self.roots.contains(dep_id) {
self.roots.remove(dep_id);
}
}
self.roots.insert(id.clone());
self.nodes.insert(id.clone(), node);
Ok(id)
}
/// Check if we already have a copy of a node.
pub fn check_for_node(&self, id: &[u8; HASH_LEN]) -> bool {
return self.nodes.contains_key(id);
}
/// Get a node from the DAG by it's hash identifier if it exists.
pub fn get_node_by_id(&self, id: &[u8; HASH_LEN]) -> Option<&Node<N, HW, HASH_LEN>> {
self.nodes.get(id)
}
/// Get the set of root node ids.
pub fn get_roots(&self) -> &BTreeSet<[u8; HASH_LEN]> {
&self.roots
}
/// Get the map of all nodes in the DAG.
pub fn get_nodes(&self) -> &BTreeMap<[u8; HASH_LEN], Node<N, HW, HASH_LEN>> {
&self.nodes
}
/// Compare two nodes by id in the graph. If the left id is an ancestor of the right node
/// then `returns `NodeCompare::Before`. If the right id is an ancestor of the left node
/// then returns `NodeCompare::After`. If both id's are equal then the returns
/// `NodeCompare::Equivalent`. If neither id are parts of the same subgraph then returns
/// `NodeCompare::Uncomparable`.
pub fn compare(&self, left: &[u8; HASH_LEN], right: &[u8; HASH_LEN]) -> NodeCompare {
if left == right {
NodeCompare::Equivalent
} else {
// Is left node an ancestor of right node?
if self.search_graph(right, left) {
NodeCompare::Before
// is right node an ancestor of left node?
} else if self.search_graph(left, right) {
NodeCompare::After
} else {
NodeCompare::Uncomparable
}
}
}
fn search_graph(&self, root_id: &[u8; HASH_LEN], search_id: &[u8; HASH_LEN]) -> bool {
if root_id == search_id {
return true;
}
let root_node = match self.get_node_by_id(root_id) {
Some(n) => n,
None => {
return false;
}
};
let mut stack = vec![root_node];
while !stack.is_empty() {
let node = stack.pop().unwrap();
let deps = node.dependency_ids();
for dep in deps {
if search_id == dep {
return true;
}
stack.push(match self.get_node_by_id(dep) {
Some(n) => n,
None => panic!("Invalid DAG STATE encountered"),
})
}
}
return false;
}
}
impl<N, HW, const HASH_LEN: usize> Default for Merkle<N, HW, HASH_LEN>
where
N: ByteEncoder,
HW: HashWriter<HASH_LEN>,
{
fn default() -> Self {
Self {
roots: BTreeSet::new(),
nodes: BTreeMap::new(),
}
}
}

View File

@ -11,170 +11,10 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::{BTreeMap, BTreeSet};
use hash::{ByteEncoder, HashWriter};
use node::Node;
mod hash;
mod node;
/// Node comparison values. In a given Merkle DAG a Node can come `After`, `Before`, be `Equivalent`, or `Uncomparable`.
/// If the two nodes have the same id they are eqivalent. If two nodes are not part of the same sub graph within the DAG
/// then they are Uncomparable. If one node is an ancestor of another DAG then that node comes before the other. If the
/// reverse is true then that node comes after the other.
#[derive(PartialEq, Debug)]
pub enum NodeCompare {
After,
Before,
Equivalent,
Uncomparable,
}
#[derive(Debug)]
pub enum EdgeError {
NoSuchDependents,
}
/// A Merkle-DAG implementation. This is a modification on the standard Merkle Tree data structure
/// but instead of a tree it is a DAG and as a result can have multiple roots. A merkle-dag specifies
/// a partial ordering on all the nodes and utilizes the api to ensure that this ordering is
/// preserved during construction.
///
/// The merkle dag consists of a set of pointers to the current known roots as well as the total set
/// of nodes in the dag. Node payload items must be of a single type and implement the `ByteEncoder`
/// trait.
///
/// A merkle DAG instance is tied to a specific implementation of the HashWriter interface to ensure
/// that all hash identifiers are of the same hash algorithm.
#[derive(Clone, Debug)]
pub struct DAG<N, HW, const HASH_LEN: usize>
where
N: ByteEncoder,
HW: HashWriter<HASH_LEN>,
{
roots: BTreeSet<[u8; HASH_LEN]>,
nodes: BTreeMap<[u8; HASH_LEN], Node<N, HW, HASH_LEN>>,
}
impl<N, HW, const HASH_LEN: usize> DAG<N, HW, HASH_LEN>
where
N: ByteEncoder,
HW: HashWriter<HASH_LEN>,
{
/// Construct a new empty DAG. The empty DAG is also the default for a DAG.
pub fn new() -> Self {
Self::default()
}
/// Add a new payload with a required set of dependency_ids. This method will construct a new node
/// and add it to the DAG with the given payload item and dependency id set. It is idempotent for any
/// given set of inputs.
///
/// One result of not constructing/adding nodes in this way is that we ensure that we always satisfy
/// the implementation rule in the merkel-crdt's whitepaper.
pub fn add_node<'a>(
&'a mut self,
item: N,
dependency_ids: BTreeSet<[u8; HASH_LEN]>,
) -> Result<[u8; HASH_LEN], EdgeError> {
let node = Node::<N, HW, HASH_LEN>::new(item, dependency_ids.clone());
let id = node.id().clone();
if self.nodes.contains_key(&id) {
// We've already added this node so there is nothing left to do.
return Ok(id);
}
for dep_id in dependency_ids.iter() {
if !self.nodes.contains_key(dep_id) {
return Err(EdgeError::NoSuchDependents);
}
// If any of our dependencies is in the roots pointer list then
// it is time to remove it from there.
if self.roots.contains(dep_id) {
self.roots.remove(dep_id);
}
}
self.roots.insert(id.clone());
self.nodes.insert(id.clone(), node);
Ok(id)
}
/// Get a node from the DAG by it's hash identifier if it exists.
pub fn get_node_by_id(&self, id: &[u8; HASH_LEN]) -> Option<&Node<N, HW, HASH_LEN>> {
self.nodes.get(id)
}
/// Get the set of root node ids.
pub fn get_roots(&self) -> &BTreeSet<[u8; HASH_LEN]> {
&self.roots
}
/// Get the map of all nodes in the DAG.
pub fn get_nodes(&self) -> &BTreeMap<[u8; HASH_LEN], Node<N, HW, HASH_LEN>> {
&self.nodes
}
/// Compare two nodes by id in the graph. If the left id is an ancestor of the right node
/// then `returns `NodeCompare::Before`. If the right id is an ancestor of the left node
/// then returns `NodeCompare::After`. If both id's are equal then the returns
/// `NodeCompare::Equivalent`. If neither id are parts of the same subgraph then returns
/// `NodeCompare::Uncomparable`.
pub fn compare(&self, left: &[u8; HASH_LEN], right: &[u8; HASH_LEN]) -> NodeCompare {
if left == right {
NodeCompare::Equivalent
} else {
// Is left node an ancestor of right node?
if self.search_graph(right, left) {
NodeCompare::Before
// is right node an ancestor of left node?
} else if self.search_graph(left, right) {
NodeCompare::After
} else {
NodeCompare::Uncomparable
}
}
}
fn search_graph(&self, root_id: &[u8; HASH_LEN], search_id: &[u8; HASH_LEN]) -> bool {
if root_id == search_id {
return true;
}
let root_node = match self.get_node_by_id(root_id) {
Some(n) => n,
None => {
return false;
}
};
let mut stack = vec![root_node];
while !stack.is_empty() {
let node = stack.pop().unwrap();
let deps = node.dependency_ids();
for dep in deps {
if search_id == dep {
return true;
}
stack.push(match self.get_node_by_id(dep) {
Some(n) => n,
None => panic!("Invalid DAG STATE encountered"),
})
}
}
return false;
}
}
impl<N, HW, const HASH_LEN: usize> Default for DAG<N, HW, HASH_LEN>
where
N: ByteEncoder,
HW: HashWriter<HASH_LEN>,
{
fn default() -> Self {
Self {
roots: BTreeSet::new(),
nodes: BTreeMap::new(),
}
}
}
pub mod dag;
pub mod hash;
pub mod node;
pub mod prelude;
#[cfg(test)]
mod test;

17
src/prelude.rs Normal file
View File

@ -0,0 +1,17 @@
// Copyright 2022 Jeremy Wall (Jeremy@marzhilsltudios.com)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
pub use crate::dag::*;
pub use crate::hash::*;
pub use crate::node::*;

View File

@ -1,130 +0,0 @@
// Copyright 2022 Jeremy Wall (Jeremy@marzhilsltudios.com)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use proptest::prelude::*;
use std::collections::{hash_map::DefaultHasher, BTreeMap, BTreeSet};
use crate::{NodeCompare, DAG};
fn simple_edge_strategy(
nodes_count: usize,
) -> impl Strategy<Value = (Vec<String>, BTreeSet<usize>)> {
prop::collection::vec(".*", 4..nodes_count).prop_flat_map(|payloads| {
let nodes_len = payloads.len();
(
// our total list of nodes.
Just(payloads),
// our list of roots.
prop::collection::btree_set(1..nodes_len, 1..(nodes_len / 2)),
)
})
}
fn complex_dag_strategy(
nodes_count: usize,
depth: usize,
branch: usize,
) -> impl Strategy<Value = DAG<String, std::collections::hash_map::DefaultHasher, 8>> {
prop::collection::vec(".*", depth..nodes_count).prop_flat_map(move |payloads| {
let nodes_len = payloads.len();
let mut dag = DAG::<String, std::collections::hash_map::DefaultHasher, 8>::new();
// partition the payloads into depth pieces
let mut id_stack: Vec<[u8; 8]> = Vec::new();
for chunk in payloads.chunks(nodes_len / depth) {
// loop through the partions adding each partions nodes to the dag.
let dep_sets: Vec<BTreeSet<[u8; 8]>> = if id_stack.is_empty() {
vec![BTreeSet::new()]
} else {
let mut dep_sets = Vec::new();
for id_chunk in id_stack.chunks(branch) {
let id_set = id_chunk.iter().fold(BTreeSet::new(), |mut acc, item| {
acc.insert(item.clone());
acc
});
dep_sets.push(id_set);
}
dep_sets
};
let dep_set_len = dep_sets.len();
for (idx, p) in chunk.iter().enumerate() {
let dep_idx = idx % dep_set_len;
let dep_set = dep_sets[dep_idx].clone();
id_stack.push(dag.add_node(p.clone(), dep_set).unwrap().clone());
}
}
Just(dag)
})
}
proptest! {
#[test]
fn test_dag_add_node_properties((nodes, parent_idxs) in simple_edge_strategy(100)) {
// TODO implement the tests now
let mut dag = DAG::<String, DefaultHasher, 8>::new();
let parent_count = parent_idxs.len();
let mut dependents = BTreeMap::new();
let mut node_set = BTreeSet::new();
for (idx, n) in nodes.iter().cloned().enumerate() {
if !parent_idxs.contains(&idx) {
let node_id = dag.add_node(n, BTreeSet::new()).unwrap();
node_set.insert(node_id.clone());
let parent = idx % parent_count;
if dependents.contains_key(&parent) {
dependents.get_mut(&parent).map(|v: &mut BTreeSet<[u8; 8]>| v.insert(node_id));
} else {
dependents.insert(parent, BTreeSet::from([node_id]));
}
}
}
for (pidx, dep_ids) in dependents {
let node_id = dag.add_node(nodes[pidx].clone(), dep_ids).unwrap();
node_set.insert(node_id.clone());
}
assert!(dag.get_roots().len() <= parent_count);
assert!(dag.get_nodes().len() == node_set.len());
}
}
proptest! {
#[test]
fn test_complex_dag_node_properties(dag in complex_dag_strategy(100, 10, 3)) {
// TODO(jwall): We can assert much more about the DAG if we get more clever in what we return.
let nodes = dag.get_nodes();
assert!(nodes.len() <= 100);
let roots = dag.get_roots();
assert!(roots.len() < dag.get_nodes().len());
for node_id in nodes.keys() {
let mut is_descendant = false;
if roots.contains(node_id) {
continue;
}
for root in roots.iter() {
if let NodeCompare::After = dag.compare(root, node_id) {
// success
is_descendant = true;
}
}
assert!(is_descendant);
}
// Check that every root node is uncomparable.
for left_root in roots.iter() {
for right_root in roots.iter() {
if left_root != right_root {
assert_eq!(dag.compare(left_root, right_root), NodeCompare::Uncomparable);
}
}
}
}
}

27
src/store.rs Normal file
View File

@ -0,0 +1,27 @@
// Copyright 2022 Jeremy Wall (Jeremy@marzhilsltudios.com)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::hash::{ByteEncoder, HashWriter};
use crate::node::Node;
pub enum StoreError {}
pub trait Store<N, HW, const HASH_LEN: usize>
where
N: ByteEncoder,
HW: HashWriter<HASH_LEN>,
{
fn get(&self, id: &[u8; HASH_LEN]) -> &Node<N, HW, HASH_LEN>;
fn store(&mut self, node: Node<N, HW, HASH_LEN>) -> Result<(), StoreError>;
}

View File

@ -12,12 +12,13 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::hash_map::DefaultHasher;
use std::collections::BTreeSet;
use super::*;
use crate::prelude::*;
#[test]
fn test_root_pointer_hygiene() {
let mut dag = DAG::<&str, DefaultHasher, 8>::new();
let mut dag = Merkle::<&str, DefaultHasher, 8>::new();
let quax_node_id = dag.add_node("quax", BTreeSet::new()).unwrap();
assert_eq!(
quax_node_id,
@ -38,7 +39,7 @@ fn test_root_pointer_hygiene() {
#[test]
fn test_insert_no_such_dependents_error() {
let missing_dependent = Node::<&str, DefaultHasher, 8>::new("missing", BTreeSet::new());
let mut dag = DAG::<&str, DefaultHasher, 8>::new();
let mut dag = Merkle::<&str, DefaultHasher, 8>::new();
let mut dep_set = BTreeSet::new();
dep_set.insert(*missing_dependent.id());
assert!(dag.add_node("foo", dep_set).is_err());
@ -48,7 +49,7 @@ fn test_insert_no_such_dependents_error() {
#[test]
fn test_adding_nodes_is_idempotent() {
let mut dag = DAG::<&str, DefaultHasher, 8>::new();
let mut dag = Merkle::<&str, DefaultHasher, 8>::new();
let quax_node_id = dag.add_node("quax", BTreeSet::new()).unwrap();
assert_eq!(
quax_node_id,
@ -64,7 +65,7 @@ fn test_adding_nodes_is_idempotent() {
#[test]
fn test_adding_nodes_is_idempotent_regardless_of_dep_order() {
let mut dag = DAG::<&str, DefaultHasher, 8>::new();
let mut dag = Merkle::<&str, DefaultHasher, 8>::new();
let quake_node_id = dag.add_node("quake", BTreeSet::new()).unwrap();
let qualm_node_id = dag.add_node("qualm", BTreeSet::new()).unwrap();
let quell_node_id = dag.add_node("quell", BTreeSet::new()).unwrap();
@ -86,7 +87,7 @@ fn test_adding_nodes_is_idempotent_regardless_of_dep_order() {
#[test]
fn test_node_comparison_equivalent() {
let mut dag = DAG::<&str, DefaultHasher, 8>::new();
let mut dag = Merkle::<&str, DefaultHasher, 8>::new();
let quake_node_id = dag.add_node("quake", BTreeSet::new()).unwrap();
assert_eq!(
dag.compare(&quake_node_id, &quake_node_id),
@ -96,7 +97,7 @@ fn test_node_comparison_equivalent() {
#[test]
fn test_node_comparison_before() {
let mut dag = DAG::<&str, DefaultHasher, 8>::new();
let mut dag = Merkle::<&str, DefaultHasher, 8>::new();
let quake_node_id = dag.add_node("quake", BTreeSet::new()).unwrap();
let qualm_node_id = dag
.add_node("qualm", BTreeSet::from([quake_node_id.clone()]))
@ -116,7 +117,7 @@ fn test_node_comparison_before() {
#[test]
fn test_node_comparison_after() {
let mut dag = DAG::<&str, DefaultHasher, 8>::new();
let mut dag = Merkle::<&str, DefaultHasher, 8>::new();
let quake_node_id = dag.add_node("quake", BTreeSet::new()).unwrap();
let qualm_node_id = dag
.add_node("qualm", BTreeSet::from([quake_node_id.clone()]))
@ -136,7 +137,7 @@ fn test_node_comparison_after() {
#[test]
fn test_node_comparison_no_shared_graph() {
let mut dag = DAG::<&str, DefaultHasher, 8>::new();
let mut dag = Merkle::<&str, DefaultHasher, 8>::new();
let quake_node_id = dag.add_node("quake", BTreeSet::new()).unwrap();
let qualm_node_id = dag.add_node("qualm", BTreeSet::new()).unwrap();
let quell_node_id = dag.add_node("quell", BTreeSet::new()).unwrap();